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I. INTRODUCTION

A. Motivation
| Existing models of imploding wire or puff gas plasmas1’2 leave a
number of physical processes unexplored or only partially examined in their
assessment of diode imploded plasmas as radiation sources. The one-dimension-
al implosion code to be described here is an attempt to increase the physical
relevance of such models.sand to enhance the versatility and robﬁstness of the
numerical schemes used to implement them.

Among the relatively unexplored physics questions, one finds those
of photon/plasma energy exchange, plasma thermoelectric radial stresses and
the effect of separately evolved ion and electron temperatures on opacity
calculations. The incompletely examined physics involves: the processes of

current penetration into the plasma load, the correlations of diode waveforms

ATS od kL RIS

and plasma motions (generated by reflected power in the diode cavity), the

energy partition between thermal motion and ionization potential, and the role

of marginally stable drift-speed limitations in determing the implosion dynamics.

These considerations can be orgahized into several concrete goals for the

calculation.

1) Find how important are the details of photon/plasma energy

exchange in structuring the implosion trajectory and (spatially
resolved) energetics. The transitions in qualitative characteris-

tics (ranging from refrigerative collapse to strong reflection)

noted in the core-corona mode13 were quite sensitive to the opacity
calculation. In a full 1-D implosion calculation the resolution
of the enhanced "thermal conduction" due to direct photon/plasma
energy exchange will provide a more accurate picture of the plasma

-

emission profile.
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2)

3)

4)

5)

LhC s;’, 20

Determine the role of separate ifon and electron temperatures

in establishing this emission profile and in governing the plasma

dynamics. As compared with a single-temperature picture, one
expects the proper two-temperature treatment to alter the pressure ié;é
gradients in low density regions and change the opacity in higher :¥§S
density regions, perhaps altering the spectral mix of line and

continuum radiation.

Examine the effect of the chemical potential (properly included
in the plasma energy balance as a function of electron energy and
ion density) on the implosion energetics and the emission pr‘m‘ﬂe.4
An accurate partition of incoming energy will probably provide lower
(more physical) temperatures at peak implosion than earlier models.

Develop an accurate picture of the current penetration mechan-
isms. Diffusive transport of Ez(r, t) (or Be) is dominant to a first
approximation, but overall implosion performance is sensitive to the
effective skin depth.5 The role of the free wave field components
in setting this skin depth has not been examined, and the rate of
inward propagation for the drift-speed limitations in Jz may be
affected by these components.

Resolve the sources of reflected power within the plasma load
and relate them to the available measured waveforms from experiment.
An electromagnetic calculation of all fieids within the plane paraliel
diode opens one more channel of diagnostic information, and may
provide a means of inferring plasma motion from measured waveforms.
It will also provide 2 more acr irate statement of energy conservation
because the energy con*- nea in the net free wave component will be
included.
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6) Examine the effect of radial ambipolar electric fields, and the
resulting stress, on the implosion dynamics, particularly in the low B
density regions where drift speed limits are expected. The radial J
electric fields arise from thermoelectric effects and axial drifts

of charge carriers. Large temperature gradients, allowed by weak

cross field thermal conduction and enhanced ohmic heating in the
corona plasma, may provide a significant radial electric field and
_ resulting inward stress on the plasma.

Once these physical questions are addressed coherentiy, a smooth
upgrading in the sophistication of the radiation emission and transport
model becomes a fruitful exercise. With the radiative, hydrodynamic, and
electrodynamic models structured from first principles there are no “free
knobs” and the subsequent benchmarks with an appropriately configured
experiment, if successful, provide a firm basis for similar theory in more
difficuit and perhaps more practical diode configurations.

~ Apart from these physical questions are various topics arising in
the numerical implementation of whatever implosion model is selected. First
is the choice of grid; a typical simulation will show the model plasma
compressed several orders of magnitude during the'course of a calculation.

A strict Eulerian fluid calculation can thus lose its spatial resolution

at the final collapse, when this resolution is most needed. Moreover large
density gradients are commonplace, and it is probable that the dynamics of the
Tow density region is dominated by the balance of density gradients and
magnetostrictive stresses. A Lagrangian description is thus preferable in

an implosion/explosion calculation, so long as the external stresses on the
system can be defined readily over the spatial domain of interest. On the

other hand the fundamental field (Ez) generating the implosion is defined

----------------
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X : in the fixed laboratory frame and is most naturally discretized on an Eulerian
3 mesh. The electromagnetic problem therefore requires an interpolation capa-

bility which can map external stresses onto a convecting fluid and extract

[
[
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S field sources from this moving fluid. The natural compromise adopted here
; is a completely Lagrangian fluid model convecting through a laboratory-
2 frame (Eulerian) electromagnetic grid. The electromagnetic grid can be
fg made sufficiently non-uniform to concentrate the Ez information density near
é the axis while the smoothly distorted Lagrangian fluid grid is a ratural
;“ choice for an accurate resolution of density gradients.
ii A second concern is the choice of Ez or Ba(Jz) as the fundamental electro-
'i dynamic variable. In our view the proper selection is E, because it is the
f natural field from which to establish drift-speed limitations on the current
;% density. This consideration plays a fundamental role in both the development
‘ﬁ of the Hertz vector formalism and in the choice of the diffusive limit
discussed below (II1.A.). Using B, and J, = §= (7 x B;), in a drift speed
;? Timitation algorithm has two disadvantagés. The current is derived from a
‘i potentially noisy differentiation process. The limit Jz = en, Cs does not
A imply a completely local value for Ez because the conductivity depends on
‘§ Ba, and hence on Jz at other grid points. It is cleariy possible to remove ‘
-§ the second problem by iteration, but the physical process providing the drift ';
:; speed 1imit is a local (fine scale) one. By proceeding first from the local ;
g values of Ez’ then iteratively establishing small corrections to the (possibly 2:
:3 limited) J, from non-local considerations, one achieves a more natural and i?
53 probably less nofsy convergence to the Timit. Ei
}3 A third point is the selection of forward time integration methods. :3
;? A common preference for conservatively advanced explicit integrators must E
}% be examined carefully in the context of this radiatively coupled problem. }j
2 %
f? 4 -~
4
3

N
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As the level of sophistication in the radiative transfer physics is

increased a considerable expense is incurred for each fluid time deriva- ]
tive. This expense will scale linearly with the number of frequency domains _ A
and quadratically with the spatial resolution. In order to optimize the :
complete algorithm- it is therefore necessary to make the best possible use ]
of every time derivative available from the space-time mesh. Moreover, as -id

distinct from calculations dominated by processes internal to the fluid, the

problem of simulating an electromagnetically driven implosion requires a
self-consistent time evolution of both field and fluid. This class of
problems is more likely to be handled efficiently and accurately by an
implicit method, or at least by a predictor/corrector scheme. This choice
has only the disadvantage of being more cumbersome to implement, and, as
described below, the methods chosen make a gmooth transition from "nearly
explicit" to "fully implicit." As dictated by the performance characteris-
tics of the complete algorithm, the user will be able to optimize the
accuracy and cost tradeoff by several means.

A final consideration is the accuracy of spatial differentiation

within either the hydrodynamic or electrodynamic algorithms. I[f these

algorithms can make good use of non-uniform meshes in space and time, then

one can sustain useful accuracy with fewer points. The common differentiation

".*.-_"1
'-::'-1
-

methods based on finite differences are quite accurate when a dense mesh is

admissible, but if one wishes to keep down the cost of radiative transfer

calculations a higher order, smoother scheme is preferable. Some useful

alternatives are discussed in Chapter II.
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B. Computational Aporoach

b o DA

The specific physical content of the model has been described
6,7,8

elsewhere. The task of implementation can be readily broken down into

the three problem areas treated below - electromagnetics, hydrodynamics,

and radiative transfer. The requirements for each problem area and a

summary of the algorithms employed are given.

3 The electrodynamic problem statement is simple: given voltage wave-

AL
PR AL AL

forms at the periphery of the diode, establish the E and B fields on the
interior spatial domain for the duration of the implosion process. By

driving the diode E/M model at one radius with a voltage waveform, the current

’ avh ek shedadBi e

drawn by the load and the voltage waveforms at any interior point are avail-
able as predicted observables/diagnostics of the code and the experiment.

Conventional approaches replace the vacuum portion of the diode with a

PR D

circuit relation derived from Faraday's law, but a complete electromagnetic
‘J calculation provides more information. If this later goal is chosen then the

issue of efficient and effective calculation becomes an important question.

At

With the implosion model discussed here the choice has been to admit either
option, viz. the full electromagnetic computation or the electrodiffusive

1imit and circuit equation.

@ R A

For the first option, it is instructive and in many ways practical
to utilize the generalized Hertz vector potential. First, this new potential

reduces the electrodynamics to.a single component of a single vector wave

equation. This reduction simplifies the calculation by placing no self-

- $Radast

!
e

consistency constraints on the time evolution of the fields Ez, Ba. The
required self-consistency is automatic when EZ, Be are derived from a
single potential Zz' Second, the coupling term between field and plasma

is properly defined to all orders in the radial fluid convection velocity

S SANTRRANS. VA0
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g = Vf1u1a/°' and smoothly admits marginally stable drift-speed limited
conduction and (quasi-static) thermo-electric contributions. Properly, as
fast time scale phenomena which track the instantaneous state of the system,
these effects should be calculated from a single time slice of informationm.
Without the Hertz vector formulation, an electromagnetic calculation evolving
Ez. Be separately can only accomplish this to the extent that it satisfies
the temporal self-consistency constraint mentioned above. Third, the coupling
term is a spatial convolution with a fixed Green's function. The spatial
averaging will generally serve to lower the noise level of the calculatidn

by damping any chatter that may appear on the discrete source array extracted
from the plasma representation. Fourth, while the use of Z does require the
extraction of high order spatial derivatives from discrete data, the accuracy
of such spatial differencing can be 1mpro§ed by the use of so-called smooth
fnter901at°fs-9 The estimation of local Ez fields from the parent Hert:z
vector by mean: of these splines is routinely accurate to [10'6], even between
the input data points.

The Hertz-vector-based electromagnetic calculation proceeds from a
spatially discrete set of information {Z, afz, Js 31J' 3$J}, given at a single
time. The first two elements of this set are defined at fixed radial points;
the last three, established (sequentially) on a convecting (Lagrangian) grid of
plasma call centers. The local values of E, B at any such time level are deter-

mined by (Z, 312’ J) and parti§11y determine the plasma stress and heating rates.

2
T

source terms. These source terms are interpolated for use in an explicit

From the values of aTJ, 3-J, a spatial convolution produces the Hertz vector
wave quadrature formula which advances the Hertz vector and its partial time
derivative in order to establish Z, aTZ at any subcycle time step (used in

the thermal conduction scheme) or at the next major time level.
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The second electrodynamic option is that of E-field diffusion, which
derives from the Hertz potential wave equation in the limit that incoming and
outgoing waves are in detailed balance. This limit is approximate but
reasonably accurate. It neglects the net displacement current, making any
detailed outgoing wave calculation impossible because no wave source is
extracted from the plasma. Reflected power is manifested solely as a
diminished voltage on the plasma load and the energy delivered is simply

ftdt (1 V__ ). Here only the plasma current waveform is available as

plasma’ 'gen

diagnostic information, insofar as the voltage at the convecting plasma
vacuum interface is not usually available from experiment. The major simpli-
fication is that Z need not be explicitly employed; it is sufficient to
diffuse the Ez field and calculate the Be field in a (self-consistent) quasi-
static manner. O0Oiffusion of Ez rather than Be is preferable because the

criteria for drift speed limitation stem most directly from the appliication of

an "E-field-to-local-J" mapping.

Diffusion based e1ectrodynam1cs proceeds concurrently with subcycled
thermal conduction. A circuit relation sets the time varying value of Ez at
the outer boundary of the plasma, and the time slice information {Eth’ E, B, .
8, o, o} defined on the (convecting) plasma cell centers determines the :
material derivative of Ez' Here Eé =B+ B X Be is the field in the
convecting frame; Eth is the axial thermoelectric field. The new field Ez
at the next time level is determined implicitly by the time sequence of
material derivatives. The plasma mesh evolves in response to the stresses
partially determined by the local values of E, B. In this mode of operation
some iteration is required in obtaining both DEZ/Dt and Ba in contrast to
the electromagnetic calculation. There only the quasi-static portion of Ba
requires iterative refinement due to the magnetic field dependence of the

plasma conductivity.
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In either electromagnetic or diffusive mode the imposition of drift-
speed limited conduction is straightforward here because the Ez(r,t) profiie
is established a priori, before J, is estimated. The rational basis for
preference between these two can be derived only when the goals of [.A.(4)
above are reached and when the comparative computation costs of well tuned
subroutines are established.

The hydrodynamic problem is readily formulated (once E, B are con-
sidered given) in terms of well-known techniques. The primary cha]Tengg is
to produce a quiet, relatively robust algorithm capable of concentrating the
computational effort on the faster time scales of the problem, minimizing the
number of expensive derivative evaluations required, and retaining spatial
resolution of very highly compressed plasma loads.

In view of these requirements a Lagrangian formulation of the two-
fluid transport equations for number density, flow velocity, and temperature
has been implemented. There are several simplifications to the complete set
of transport equations which are appropriate to the imploding diode plasma,
but the hydrodynamic model is essentially that of Braginskii. In particu-
lar the radial flow field is assumed to be identical for ions and electrons,
the electron density is assumed to be in quasineutral equilibrium with the ion
density (apart from small ambipolar charge separations), and the system of
moment equations is closed with an ideal gas equation of state for each
fluid. This reduces the fluid variables to (n;, V., T, Ter 3 €r}. However

Te is not a very good thermodynamic variable because it is tightly coupled

to }, the effective ionization state and to €1 the specific chemical
potential. In order to follow the fonization dynamics efficiently, let

2 &1 .
ee = Te + 33:— and evolve ee instead. The approximation of the collisional

radiative eQuilibrium1o (CRE) mocel is to assume a very rapid establishment
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-gﬂ of 3and ¢, from (given) n; and T_. Hence the usual heating sourcés and
f‘ sinks for T,, when 2 1s fixed, become (in effect) heating sources and sinks
f‘? for ee in the context of CRE ionization dynamics. From a sufficiently accurate :L
§§ representation, preprocessed by the complete CRE model and smoothly inter- ii
ég polated, one may simply advance 8 (the "grand canonical temperature") and ;f
| compute Te’ } » €7 and all other transport coefficients from the 8-value :’
;i obtained at any timestep. This later method is presently implemented. As is ﬁ;
*ﬁ common practice in Lagrangian calculations, one may also remove the ion
j density from the set of evolved quantities by-conserving the total number of
\3 ions in any cell, unless a rezoning is done, and calculating the density Ny
fi from the time varying cell volume. Hence the irreducible set of fluid vari-
ii ables to be evolved is {Vr, TI’ ee}’ with the r = ftdtlvr(tl) defining the
‘Fii, variable mesh positions to be used in computing the density n;. For the
Ei choice of diffusive electrodynamics, this set is expanded to {Ez, Vr, TI, ee}

and the separate evolution of (Z, at Z} through the Hertz vector wave equation

(s
RN "

is discarded.

£ "l
KN R
£ ¢

Y
9’
bV I ENN

The complete set of magnetoplasma, g;-dependent transport coefficients

is available in a single subroutine, and those required for the simplest

=, “%{1' j

relevant problem are the axial electrical conductivity, the radial ion and

s
5

electron thermal conductivities and the radial thermoelectric coefficient.

2
-

);

The expansion of the model to include radial ambipolar electric fields,

P 5

IR0

viscous stresses and viscous heating only requires activation of the axial

P
¥
%)
aY friction coefficient and five viscosity coefficients. Moreover, because the
o=
J;Q, relaxation time is the cornerstone of the transport calculation an extension
% |
ﬁ}ﬁ into more strongly coupled plasma domains is quite straightforward on a
o, .' ‘."
) cell-by-cell basis. The use of a modified relaxation time based on the local
[ gn
Ti} Coulomb logarithm is a useful first approximation in strongly coupled plasma
5
v 10
aty
n
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transport]] and can be relevant here in some simulations of wire or foil

annular implosions. L
The hydrodynamic calculation across a major time step proceeds ?;f

from the time slice {NI, Vr’ TI, ee}. Here NI (the time invariant total

number of cell ions), TI and 6, are defined at the cell centers, while V_
and r(t) are defined at the cell interfaces. From this basic data the model
calculates Te’ 9, €1» all transport coefficients, all heating rates and all
fluid stress terms (after E and B have been established). The major time
step is selected from a competition among the magnetosonic Courant condition,
fractional cell area changes, local truncation error in estimating future
accelerations (Dvr/Dt), and the most rapidly varying electromagnetic source
terms. Once the major time step is set,a time window is defined over which
thermal conduction, compressional heating, radiative heating or cooling, and
ion-electron exchange heating are subcycled at the cell centers (under an
assumed cell boundary evolution).. This subcycle is implemented using an
(implicit) variable order Adams predictor-corrector or Gear method. At the
compietion of the subcycle the explicit flow field advance (and implied cell
boundary motion) is either retained or iteratively refined (becoming the
starting point for an implicit method). If desired the iteration proceeds
until self-consistency is achieved. The self-consistency criterion is solution

of the first order (non-linear) difference equation for the fluid accelera-

tion, to a specified tolerance at all mesh points. For the diffusion based

electrodynamics the subcycle includes the Ez field evolution as well.

A central element in the hydrodynamic model is the question of
radiation transport. The algorithm presently implemented is a compromise
between the full CRE calculation and the much simplified local approxima-

12

tion*® of the SPLAT code. First, the emission function preprocessed by the

11
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,if CRE model is represented over the relevant density and temperature domain. ff
£ 4 i
= One such emission curve is required for each radiation category one wishes to -
ld calculate. A simple set is: (lines hv < 1 keV, lines hv > 1 keV, free- %
Py 3
2 bound continuum, & Bremsstrahlung}. Next,for each radiation category a o]
43 damping coefficient is computed for each cell. These damping coefficients jf
” are path integrated along a selected ray to produce a probability of escape o
Eﬁ for that photon category. From the escape probability field a matrix of

fﬁ coupling coefficients is derived. Once the coupling matrix is given,

4% selected inner products with the vector of cell emissions for a particular

?ff category produce the cell-to-cell photon exchange and the net radiative loss

2 .

X to the plasma from any zone in each radiation category.

;é% This formulation has the advantages of being easily expanded into a :
f- -
\* <
,$3 muitiple group algorithm and easily modified to include other elements. At -
Lo -
) present AL and Ar are available, although the representation of ee is not

% yet available for Ar. The disadvantages lie in the added calculation of the

?éﬁ coupling matrix and in the need to establish a fresh matrix for each radiation

o

2 category. It is hoped that the use of implicit methods for the overall hydro-

,§ dynamic advance will offset the cost of these radiative loss calculations by

fror

t;l requiring fewer time derivative evaluations to achieve useful accuracy.
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II. ACCURATE METHODS FOR NUMERICAL DIFFERENTIATION
A. Survey of the Theory of Smooth Interpolants

A1l interpolation methods are based on some criterion of distance

between functions. The free parameters of the interpolation scheme are to bpe
chosen in such a way as to minimize the "distance" between the data function
F(x) .and the interpolant z(x). Smooth interpolants are derived by inventing
a distance:. criterion which measures the oscillation in a function as well as

its mean value. The sequence of distance measures (or norms)
E= (]b dx |Fix) - z(x)lz) %
a
~ (& D
T 8 S ax|FW0 - z(")(xnz)‘s (11.1)
=Q a

T, (,.}-:o 8_ {b dx wy(x) [FM () - z(")(x)lz)”

represents a progressively more general set of functional similarity criteria.

(Here 'the syperscript in parentheses indicates the nth

derivative.) Conven-
tional interpolation schemes stem from £ (Hilbert's noﬁn) while smooth inter-
polants arise in connection with I (Talmi-Gilat norm) or fw’ to be discussed
here. The 8, wn(x) are rather freely chosen, subject only to the constraint

of convergence.
Each of these norms can be represented also as an inner product

operation involving smoothness functionals, i.e.,
3 b (
L, (@ m) = X 8 2 axw () olWix) n(M(x), (11.2)
n=Q a

so that, e.q., Tﬁ =z Iw (F-z, F-z). [%t {s these smoothness functionals that

provide the concrete algorithms to be used for interpolation. [n particular,

13
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choose a set gz(x) of complete functions (linearly independent and

orthonormal over the interval [a, b]). Any interpolant z(x) can be
expanded in terms of this set, and the expansion coefficients are chosen in
such a way as to minimize a smooth norm of z(x) (e.q., T@(z)) subject to
constraints. The constraints are the known data concerning F(x),
z(xj) 2 F(xj), z(")(xk) 2 F(")(xk) for specified sets j = 1, 2, 3...J,
k=1,2, 3...K,,n=0,1, 2...N.

This defines an Euler-lLagrange problem which can be transformed
(using the orthonormality of the gk) into a simple linear system for the
Lagrange multipliers {Agk}. The matrix for this linear system is
determined by evaluating

& 9,(X) g (v)

R (X, ¥) 2 X,
) =0 Iw (92’ gi)

(11.3)

and its partial derivatives at the mesh points, i.e., x = {xj},

y= {%j}‘ It is the chaice for Bn and wn(x), therefore, which concretely
specifies the interpolation spline R(X,Y). The original work of Talmi and
Gilat’ shows several sets {B } which are useful in that they render R(X,Y)
summable ih closed form. A more versatile result is obtained when one
invokes T; rather than only‘T as they did.

Insteid of searching for a set {Bn} giving a useful R(X,Y), reverse
the process and choose a spline R(X, Y) = R (X-Y) likely to be similar to
the smooth functions expected to support the data. The norm T; is easily
shown to be so general as to allow the {Bn} to be extracted from the spline
R (X-Y), rather than the original (reversed) procedure. For example, select

wn(x) = (1 - %2 n, (a,b] = [-1, +1], and g,(x) = P,(x) (a Legendre

14
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Polynomial). Then

3
T (o + m;!
Iw(gz’gz)'ﬂ.i-lggem 2 - m}!

depends only on those Bm for0 <m< 2. Since any function R(X,Y) can
be expanded on [a,b] in terms of transformed coordinates U = X-Y, V = X+Y
one may always adjust the {Bn} such that the gz(x) gz(Y) expansion reproduces
the required coefficients for the expansion of R in terms of U alone.
Using R(X,Y) as the fundamental element one may cast the general

spline and its defining linear system in a very simple form,

Z(x =i Z ™ alm ex,x,
00 = 2y 20 5 3T Rixxp

pim) =i: i: a(m 5(n) R(x,,% ) | A
T Y X 27k K

Here the function R(x,y) is assumed available in closed form, the Fgm)
represent input data giving the data function and its derivatives (through
order o) at any of the Xq The notation convention here is that if any
Fim) fs left out, so also is its corresponding Ag .

2 represent the unknown Lagrange multipliers re-

In summary, the X
quired to minimize the interpolant with respect to the T@ norm implied by one's
choice for R(x,y), subject to the data constraints embodied in the Fgm{

The usual application of this involves specifying derivatives only at
the end points, but this is only a matter of choice and one may readily extend
the theory to include integral constraints as well (m < 0).

A compact matrix notation for this algorithm allows one to state

some simple rules for its use as a numerical differentiation scheme. Let

- -




e
o d

R:.

L (m) a(”)R(xi.xj)] "

L X %

gi?) a(f) R(xi,x.]

L% % J

-
_a)(‘p) a)((;‘) R(x Xy )]

p
Rij 3

jo (generally not a square matrix),

P LN B D
A P R T I o I
F 3 S A ettt

.A'Jl‘. L. l.Lt * P

and F{™ = F, AMz 2 with k= 1,2, 3. m+ 2, . 0+ Ne(number of
derivative conditions given). The defining linear system is simply ReA = F,
while the spline at any point x becomes z(x) = A - ai}) R(x,¢). Here

the operator 35*) implies a derivative only for those elements of A
corresponding to derivative constraints of a particular order; for most

X elements this derivative will be of order zers, i.e., correspond to a
function value constraint. If one wishes to write the analog of a finite
difference formula estimating the derivatives of a data function F at the

mesh points used in R, then R is required.

() £ L 4(8) 7 - [4(9) 400 el :
ax‘:) Fa a;) z [35:) aJ(L; R(l,l)] R F ,

(II.4)
F(p)' x Rp . Ro] « F

Similarly the method provides a Jacobian defining the sensitivity

of a derivative estimate to the data values producing it, i.e.

P -
g;_ 2 P . R LI (11.5)

Derivative estimates off the original data points are given by -

the formula




(p) e P -1
a5 F=R"™ « R F . (11.6)

In comparison with more common interpolation schemes, the "smooth" A !

interpolators have several advantages. First, the algorithm is clearly
vectorizable, except for the calculation of R'l. In a piecewise spline
scheme any evaluation point x (distinct from the xj) must be nested in
its appropriate interval before the interpolation can proceed and this
represents additional (non-vectorizable) calculation overhead. Using ]
(11.6) to evaluate the interpolant, one need not even put the values x in Q?j
any particular order. A further advantage over piecewise splines is a
reduction in storage space for the spline coefficients; a piecewise scheme

{

1

=4

requires the storage equivalent of M « (J + N), where M is the order of ff#

the spline. There are also significant increases in accuracy, which will

be discussed below, and the treatment of nonuniform meshes becomes much fi;j

less formidable.

B. A Family of Generalized Splines R(x,y)

One of the original splines noted by Talmi and Gilat corresponds

to the choice Bn = Dn/n! in I, and leads to the Gaussian spline

6(xay) = =L exp - (¥ (11.7)
(D

The parameter 0 plays the role of a correlation width in coupling the data

points across the mesh, and thus controls the condition number of the

resulting matrix RG. Qualitatively, as D increases from some small value,

the interpolant Z(x) evolves from a “pickett fence" structure toward a

smoother structure, then further increases in N will require X elements -

17
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of alternating signs in order to follow the data variations. As 0 + =
the RG matrix moves toward algorithmic singularity for any inversion method
using finite precision arithmetic. Usually, for positive definite datz
exhibiting clear trends, an optimal D will be found (for any particular
mesh) which allows a smooth fit with positive definite values A. In the
case of non-uniform meshes it is useful to let D vary across the mesh
according to the local data point density. The spline becomes

G(x, y;» D;) = ] exp - (x-y.)2/4D.

J° 5 J J

(“DJ‘)

so that the effective norm now involves the mean value D, a Bn “ ﬁn/n!,
and some weight function wn(x). One finds in general that, in order to
construct a giobally smooth interpolant on a highly distorted mesh, an
adjustment of Dj which preserves the number of e-foldings per interval is
advisab1e. Such an adjustment acts to diminish the variations in the
effective bandwidth of RG.

A few numerical examples of this interpolation method with the
Gaussian (or G-spline) are sufficient to convince the user that functions
F(x) with nearly null derivatives (anywhere on the domain) are rather path-
olcgica] cases. This leads quite naturally to the exploration of other
R(x,y) in attempting to accommodate such data. A useful set is derived by
integrating the G-spline repeatedly:

E (x, Yy Dj) =1+ erf (uj)

2
i 1 o™Y;
E](x, Yo Dj) 2 05 ’uj [1 + erf(uj)] + ;QHL_- (11.8)
2
L ﬂﬁw “je-uj
Ex(x, Y50 DJ) = 40, 1+ err(uj; Y .
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where uj z (x - yj)/2 D? determines the relative coupling of the data
points. The E-splines are the smooth-norm generalizations of the familiar
B-spline elements (x - yﬁ?used in piecewise spiine theory. They are of
particular utility in accommodating data which exhibit a clean asymptotic
trend or areas of null derivatives. For example in Table I is shown a

(fully optimized in D) test of the E-spline sampling a function

F(x) = A exp - B +C exp - 5

at a progressively larger number of points. The quantity tabulated is the

average fractional error in Z(m) for m=0, 1, 2, 3, 4, over the domain [ -1,
+1). The interpolant and test function are compared on a mesh much finer than

that used to sample F and to originate the calculation of A values for Z(x).

TABLE I

rel. error in Z(m), averaged over [-1, +1]:

Original sample

points of F m=0 ! 2 3 4
21 2.06E-3 0.346 0.344 0.58 22.3
3 1.10€E-5 4.29E-4  1.16E-3 8.26E-3  3.96E-2
41 4.69€-7 8.92E-5  1.92E-4 6.79E-4  2.30E-3
51 2.53€-7 8.77E-6  6.09E-5 7.16E-4 7.77E-3
61 7.41E-7 7.496-5  2.59€-4 3.15E-3  8.25E-3

As is evident from these results the E-spline can track accurately
data of quite different functional form. This example is also notable in that

a B-spline would provide a much poorer result - the constants in F(x) had

19
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been adjusted so as to produce a very flat region in the vicinity of

x = 0.2. The degradation in this interpolation for larger numbers of sample
points is a manifestation of accumulated roundoff in the linear system
solution. Moreover, in common with other methods, most of the average error
is coming from the énds of the domain. The accuracy in the interior is often
an order of magnitude better than the mean.

As with any fresh technique there are some points less well under-
stood in connection with these new splines. In particular,one is a robust -
algorithm for the choice of Dj. At present the complete automation of these
splines is not quite satisfactory. Choosing Dj based on the sample density 0
certainly works roughly but the optimum value is apparently not independent %;i

of the input data F, and more systematic study will be required on this

topic. Also the E-splines tend to overshoot functions which rise and level
off sharply, but this can probably be corrected by adding an offset in the
argument Uy i.e. uy = (x -y + cj)/Z D? .

The experience thus far has been very positive with respect to
"interactive" fits (i.e. where the user chooses the 95 and Dj rather than
automating their choice), and in the case of extracting the electric field,
E, from a Hertz potential on a fixed but non-uniform radial mesh. Specific

examples are discussed in Section D.

C. The Interactive Interpolation Package (YAX Implementation)

The present vehicle for preprocessing CRE emission or equation-of-
state data is a pair of command file synonyms: REPRESENT and EVALUATE. The
details of their usage are documentad in Appendix I. The REPRESENT algorithm
procasses an input file assumed to contain a mesh yj and one to three
functions Fj evaluated at the mesh points. The user is prompted for the spline

choice {G-splines, E-splines, or E2 splines} and the width parameter D(or D
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if the given mesh is found to be non-uniform). The appropriate R matrix
is calculated for the mesh given and an IMSL linear system solver (LEQT2F)
is used to calculate a Xj vector for each function ijinput. The output
consists of two files by the same root name (user supplied). The first is
suffixed "H" and is a header file providing default and dimension informa-
tion to the companion process EVALUATE. The second is an interpolation file
containing a copy of the original mesh Yi» the Dj required and the resulting
Aj for each of the functions Fj input.

In the present configuration REPRESENT allows the user to specify
boundary derivatives of first and/or second order at either limit of the y
domain. The boundary condition descriptors are stored in a 2 x 2 array, the
boundary derivative matrix (BOM), and embedded in the header file. The overall
accuracy of the linear system solution is controlled by a specified number
of digits of precision in the input file (IDGT) and the number of iterative
refinements allowed to the IMSL solver (ITMAX). If invoked , the iterative
refinement proceeds until the solution can be converged to IDGT precision.
Usually iterative refinement is not needed and, for the G-spline, often
appears to be unstable as well.

The companion process EVALUATE produces a file of interpolant
values and derivatives through some specified order (< 4),for any of the
Aj vectors contained in an output file from REPRESENT. The evaluation domain
can be any subset of the original mesh (y1 <y < yJ) or can aven line outside
it. EVALUATE also allows the user to change the spline type if desired.
For example Aj calculated with a G-spline can be evaluated with an E-spline

to estimate the (definite) integral of the original data over any subinterval.
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§§ D. Applications of Interest in Modeling Diode Imploded Plasmas

: (1) Estimating an E, field

;5 The primary problem in using the Hertz potentia' is the regquire- o
js ment that higher order derivatives be extracted from the discrete, time- ff
:’7 dependent potentia]hz(ri,t). As a test of the smooth interpolator's ability %l
k- to resolve these fields, a model Hertz potential )
< 4

» FZ(X)=f—°!(1+e)x4-fxdu%i ,

e 0

i % o |

‘§£ where x; 8 b& » was chosen as a data function. This is the Hertz potential :

for the E field

% E(r,t) = & (t) {1 te- exp-(rz/b)} ;

t» exhibiting a sharp rise in the vicinity of r-b&. In a similar manner to

fiﬁ the test described in Table I above, the function Fz(x) was sampled at 41

& points on a uniform x mesh (hence a mesh in r which is denser near the

‘Ei origin). The interpolation was carried out using the E2 spline, and the ia

;5% interpolant and its derivatives were compared to those of the original, ?

- ~ analytically given test function on a mesh much finer than the interpolation ;
’Sé grid. The results are shown in Table II as an average relative error and '
E% a typical interior relative error for the interpolant z(x) and its first

= four derivatives.

o TABLE 11

~ mean error 1.36E-5  1.00E-5 5.21E-5  1.0E-3  0.239 )
N interior error 2.476-6  3.25€-7  2.73E-6  7.56E-6 1.03E-4 '
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Again most of the average error occurs near the end points. The test
function is wéll matched even between the sample points (where one's
Lagrangian fluid grid will almost always be locatad).

The good fit to the potential holds as well in estimates of

E(x) and 3 £, even though

] 2
E=——3-{az+xa Z},and
ga x> VX X
0
.1 2 3 2 }
2,E — {x 32-x322-337
Q

involve Tinear combinations of the derivatives of Z. Typical interior
errors for £ are 3E-6 and for axE, 1E-6. The E2 spline has routinely
extracted these E-fields in many such tests, though the spline function by

itself only roughly resembles the test function.

(ii) Representation of thermodynamic data
In order to avoid advancing both Te (electron temperature) and

€1 (specific chemical potential) concurrently in time, the use of a

collisional radiative picture will hold these quantities in quasi-equilibrium.

The calculation of this quasi-equilibrium self-consistently with the plasma
evolution is a very expensive process; it is therefore useful to fit a
paradign calculation of € and 3 (the mean charge state) and use this as an
approximate representation of the underlying atomic physics.

The fundamental variable used is a “grand canonical temperature,"

8, = Te +'% elﬂ;. It can be most easily represented by defining a branching

e:
ratio b = ee/Te and examining b(nI,ee). Owing to the large domain of ee

values relevant to the model, the optimal data to fit are n b and &n ee'

23
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: In Figures 1 and 2 respectively are plotted the interpolants to &n b vs. :
19
'ét = ]9 : : :._‘
4 Zn 8, (for n; = 10°°) and the fits to e;(T ) and 3(T,) with &_ shown for
;" comparison (again at np = 1019). The plots are very true to the original dita "]
A <
N (5-6 significant figures) and were generated by splines of the form
) ' _‘ff
3 2 b(8 n.)ssz (n.) « G(en 8, Ln 8, 0,) (11.9a) i
el 3 j vl e’ J* 7 ’ !
3
1 e
%]
& 3- &32 AF(n,) «En T, aT,, o)f (11.9b)
% =" 1 e J E
¢ J 3
i e = 2] 2028 (n)  E(tn T, T, o)f (11.9¢) ”
X j J e J
N 3
- with a sampling of 31 data points. The choice of G-splines or E-splines 1is =
i} guided by the general form of the data. The branching ratio b is a cleanly - '
gn . . 5 )
%) peaked function, so a G-spline is the natural choice. The ionization state '
Y - .-
and chemical potential curves exhibit fla“ Jortions (in between the opening =
';}' of atomic shells) so the E-splines are indicated. 3'_:
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III. THE HERTZ DRIVEN IMPLODING PLASMA RADIATOR (PROGRAM ZDIPR)
A. Qverview

A computer program is being constructed to solve the one-dimensionai
(in radius) time-dependent interaction of a plasma annulus (with temperature-
dependent degree of ionization) and an electromagnetic driving field in a cy-
lindrical cavity. It was shown previously that the number of equations describ-
ing the fields can be reduced and the computational stability probably improved
by the use of a generalized Hertz vector, Z, from which E and B field vectors
can be derived by differentiations. In the 1imit of high plasma density the
wavelike term in the field equations can be neqlected; this corresponds to
a field-diffusion approximation. In simple cases — constant scalar con-
ductivity for example — this gives the usual magnetic diffusion equation.

The program must couple field or Hertz potential quantities,
evaluated most conveniently on a stationary (Eulerian) grid of points, with
fluid equations describing the mass-motion (Y) electron and ion temperatures
(Te’ II), ionization (?), and effective conductivity (Z) of the plasma, all
functions of r and t evaluated most conveniently on a comoving (Lagrangian)
grid. The differential equations are integrated forward in time by a
variable-timestep method (GEAR), but because the plasma thermodynamic state
eyolves much more rapidly than the fields do, it is updated separately, on a
fast timescale, with the subcycle timesteps shorter than the major timestep T
required for integration of the field and momentum equations. Doing these
updates on different timescales is expected to save a significant amount of

running time and expense in the computation, and may make the difference

between a practical cost and an impractically large one.
In the code description that follows, the subroutines that update

the plasma state on the Lagrangian "r" mesh are called MESHSTRESS

27




X

d, <
P E Y

A )

.‘
fu™ SN

!

“;ﬂ

:;ﬂ

NADE RN

Ed T

N v, 'W
P e e B S G e N R

(forces),TDOT (heating), CREOS (ionization state) and FLUIDOTS (material
derivatives), all of these being used by the subroutine GEARBOX which
controls the updating as part of the overall fluid-advance routine HYDROPUSH.
The subroutine that updates the field or Hertz potential variables
on the Eulerian "R" mesh is called ZPUSH. When the Hertz potential represent-
ation is used, the subroutine HERTZDOTS updates the source terms in the
potential equation at each major timestep. When the electric field diffusion
representation is used, the corresponding subroutine EDOT updates the field
source érJ and alternate plasma state movers (GEARBOX -+ TETGEAR; FLUIDOTS -

TETDOTS) are used because different electromagnetic information is required.

This code, called ZDIPR, is now mostly written and some of its
portions have been separately checked. Further testing and integration

of the various subroutines will be carried on in the coming weeks.
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B. Theoretical Summary

The electromagnetic calculations required are either solutions of
the Hertz wave equation or of the electrodiffusive equation derived from
it. If a complete calculation is desired, all fields and currents are derived
from solutions to

22 -uwls (ua p=arf douen (L) 4 (111.1)
T u u U/ T ' ¢

where v = ct/R,, u = R/R,, I = r,o/cs d = Zg, E = Ez/QoRSZ’ B = Be/QP;Z,
Ea= -yl au(uau Z)and Z = Zz(r,t)/Qo define the dimensionless variables and
fields: If one gives up some information concerning the details of the
diode fields and makes the assumption that the incoming and outgoing wave
components arein.detailed balance, then the wave equation above can be

transformed to a diffusion equation

D ¢ a ! A _E - -
GrE={(u" o, v Bt rr-Ed -3 E,-B38, (II.2)

where Eth fs the dimensionless thermoelectric field, 8 = Vf1uid/°’ E'= E + g8,
E=E+88 +E, and == 3_ +83,. (This diffusive Timit is derived in
Appendix II.)

The fluid response to the electromagnetic stresses and heating is

embodied in the relations

0_y. T 3T nge cE
Dtv -5 Brln nI ---r-n,.,,—--ﬁc'—n-{"';mn—l"' (111.3)
and,
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% %f %" " %’Te(V'V)+ V- (xgdpTg) + 7 * EIN U) (%'Z"I) B :

N (I11.4a)
3 2 (e ZmQ(TI-T>+Q i
. 33"1 2 2z my e Rad °’

-

3 AT AR "1>-IV'(xxarT1) * zz"l‘e <Ter; TI> - {TH-40)
12 In these expressions ee = '!‘e *3 1/3’ Ts= TI +3Te’ m=m+ 3 mys

# Xe, 1 is the thermal conductivity, Te the plasma relaxation time, Er the

z ambip61ar radial fie]d (with o its induced charge density), and Qréd is the
3 net (local) radiative heating or cooling. The dimensional version of fields
3 are subscripted with a vector component; dimensionless fields are not. The
K radial electric field is established as a solution to an integral equation
‘i derived from the radial component of Ohm's law, (cf. reference 6). The

7? drift-speed-1imited current condition is supplemented by a (nonlinear)

. change in I where the local E field requires it. The overall architecture

ij of the model is indicated in the flow chart of Figure 3, and some detailed

3

documentation of the physical content has been mentioned above (Chapter I).
The following sections describe in some detail all the specific
algorithms which are required to implement (III.1-4). For the sake of

simplicity, a common notation for all of them is given here.

PP AEA LT

The (nonuniform) time levels for any variable are indexed with a

o

g leading superscript; the Lagrangian fluid mesh is denoted by r and it.

‘é material derivatives, by a superscripted dot (or dots). Spatial indexing is
;; denoted by a trailing subscript and various cell-to-cell averaging operations
k} are denoted by an overbar or by angle brackets.
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Since the code performs a subcycle calculation wherein the time

step is set by the IMSL Gear integrator, these intermediate time levels are

denoted by a leading superscript asterisk. The subcycle interval is denoted

by T, and its end points by Tlo and Thi. Other spatial grids are employed

trasraf ol

in addition to rj. - The Eulerian electromagnetic grid is denoted by Rk’ and

L
the (Lagrangian) area coordinate a=r2 or (Eulerian) coordinate u=¢ﬁ¥(R/Ro)2

will be used also. The evaluation of any quantity at the Lagrangian cell

~

center will be denoted by a leading subscript "c". For example,*¥; denotes a

J
th

comaving acceleration on the boundary of the j~ cell evaluated at some

arbitrary point in the subcycle: Tlo < t* < Tlo + T=Thi; and ‘aTzk denotes
th

PR TR T
ralelanasaa

the first (partial) t - derivative of the Hertz potential at the i

- time level and the kth

major

grid point of the R mesh. On the other hand, Eéj

‘é denotes the first material derivative of E, at the jth cell center at some
~a time t* in the subcycle. In general the fixed mesh (R or u or u) will be
3 indexed spatially by k; the comoving mesh (ror a), by Jj. Exceptions will
} be noted.

R C. Electromagnetic Algorithms and Subroutines

)

§ Either the electromagnetic mode or the electrodiffusive mode

;; requires the establishment of a local E, field on the plasma mesh continuously
- through the subcycle. The electrodiffusive mode is discussed in Section
;3 I11.G(iv) below; only the electromagnetic calculation requires distinct

%9 subroutines and is discussed here.

The intermediate time t* chosen by the subcycle integrator is the

fundamental parameter controlling the Hertz potential wave equation integrator

DA A

ZPUSH. The input data to ZPUSH are, in addition to t*, the previous Hertz

potential (with its partial r derivative) at the last major time level and

-
| &
-4
g
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the source terms arising on the Lagrangian plasma mesh, i.e. {1Zk, 1STZk,
i

]
q
—
1
J
1

i.2 . . . . . -
aTch. arcaj}. The output of ZPUSH is simply Zk’ BTZk, from which one __J
may derive the required local fields in the fluid. {
The value of t* determines a radius of integration for the wave J
quadrature formu]ae,7 which generate the time-advanced potential and its
time derivative. The source terms and initial data are functions of radius K
only, but the wave equation solution requires them to be mapped onto a regular f;ﬂ

array of quadrature points. The quadrature points are arranged within circles

of raajus t* centered at each electromagnetic mesh point Rk' The source terms
from the plasma mesh ifj are smoothly interpolated to the whole space R using
a G-spline and, when combined with the existing interpolation coefficients for
the initial condition data, one may define six wave quadrature functions,
QF1....QF6. These are then input to WAVEQUAD, which evaluates them at the
needed quadrature points and forms the inner products that estimate the Poisson

integral solution for the Z wave equation.
Once *Zk, *BTZk are output by ZPUSH, the companion routines EFIELD
and BFIELD use these values and *Jj to produce *Ej and *Bj by means of E2

spline interpolation. Since *Jj is only known from *Ej and *Zj the previous

value for Bj is used to estimate *zj first. The quasi-static Bj componenf
is then iterated to convergence, as discussed in Section III.G(ii), and o

a self-consistent *Ej and *Bj aie established.

During a subcycle the use of ZPUSH, EFIELD and BFIELD,with '3_.J,
iafcdj held fixed,provides all the field information needed by the hydro-
dynamic portions of the program. These sources are updated however at each
major time level i, i + 1, i + 2... using the subroutine HERTZDOTS, the

fluid-to-field interface code. HERTZDOTS references the material derivatives

- -
i
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i i i 4. . l-‘..i-f
3 ch and ch and the plasma mesh crj’ er in order to compute these sources. b
? The higher order material derivatives in J are calculated using complete X
: information on the time derivatives of E, £ and the drift speed limitations
) to J.
}
) )
2 ot

G. Transport Coefficients

‘7 The central elements of the field-to-fluid interface are the
i transport coefficients, calculated by the subroutine BRAGINSKII. This code
X .
: produces values for as many as 20 transport coefficients, as functions of the
8 ion density ("I)’ electron temperature (Te),ion temperature (TI)’ an effective
§ ionization state (3), and the local megnetic field Be. Input units are CGS,
- except for temperatures in [keV].
)
i The coefficients are evaluated at the cell centers and a local
2 coordinate system: 2 = §9/|Bé|, X - any orthogonal direction, y = 2 x % is

employed. The z is called the parallel direction; X, the perpendicular; and
J ¥, the cross product. Output [CGS] transport coefficients are written in tnree
3 common blocks (PARATRAN, PERPTRAN, CRPXTRAN) which connote these directions,

and in two additional common blocks (VISCTRAN, EXCHANGE) which contain viscosity
} and electron/ion heat exchange rates. The logical matrix of coefficient
1
'3 selectors CONTROL (6, 3) in the common block TRANSPORT-CHOICE determines

which coefficients are evaluated, as shown below, in Braginskii's notation.
&
.
"
Sy
?
-
»
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TABLE 111

g Coefficient (1, 1) (1, 2) (1, 3)
g of friction Qn (3, B) qL(g, B) %NKQ’ B) 1‘5
g Thermoelectric 2, 1) (2, 2) (2, 3) ;:%
! coefficient g4T (3, 8) T (3, 8) B/U\T (} B)
i
% Electron thermal (3, 1) (3, 2) (3, 3)
[k conduction Xe (3, B) xj (3. B) x/e\ (}, B)
a
3 Ion thermal (4, 1) (4, 2) (4, 3)
: conduction x£ (3, B) xj (}. B) x/I\ (?, B)
i Electrical (5, 1) (s, 2) (5, 3)

conductivity T (3, B) qL(;, 8) crA(i, 8)

Viscosity (6, 1) (6, 2) (6, 3)

(ion & electron)  n _, (3, B) No-a (3, B) No-gq (3» B)

If CONTROL (I, J) has the value "true", this triggers the evaluation of the
indicated coefficient at all cell centers of the input mesh.

in CONTROL (6, 1, 2

Any true value
or 3) causes evaluation of all viscosity coefficients,

and the exchange heating is always evaluated (independent of CONTROL).

Since Braginskii's theory13 provides all these coefficients as

functions of WrTys WeTq

in common blocks which show WeTgs WiTye Tgs Tp and A, the Coulomb Togarithm,

and 3, the evaluation scheme also provides arrays ____1

at each cell center. The;dependence tabulated by Braginskii has been

parameterized by power laws in gfl. These fits are implementad in the ‘ -
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3 companion routines BRALPHA, BRBETA, BRGAMMA, and BROELTA, evaluating

(o] (3). oy (3), oy (IV, (8] (3), 85 (), 85 (AL, ] (3), v, (),

-'*' Yg (?)}, and {50 (i), Sy (3)} respectively. The constant values o, '1'.

g: y? are also returned in the various output arrays. All of these 3dependent

‘éa functions can be represented to reasonably accuracy (v2%) by expressions of

: the form o * (?)'A on [1, + =] in 3 For the purposes of transport

§ coefficient eva]uation‘? is restricted to be greater than 1 and so also is

:é the Coulomb logarithm. However the systematic modification of T, 2nd T, T;i
o allows the extension of the theory and the code into domains of stronger 4%
\i coupling (in the plasma parameter nkg). Once the appropriate relaxation 1.?
ES times are available the restriction on the Coulomb logarithm can be relaxed. }fE
;j The modification of redue to turbulence in the low density, drift ;ﬁi
‘;J speed limited regions is also a natural temptation. It represents the ii;
‘gg simplest way of obtaining a consistent and systematic transport package for 2;?
w turbulent loads. At present it has not been done because (<) the model of ;;
’g turbulent relaxation by a Fokker-Planck kinetic equation is questionable on t?
Eg many grounds, (.{{) the magnetic field effects in turbulent relaxation are y

.,.,..
e
s

not likely to be accurately represented by Braginskii's functions, and
lﬁ (4id) the proper treatment of turbulent transport will depend on isolating :;
%ﬂ the detailed properties of those microinstabilities peculiar to the cylindri- fg
ib cal, highly-inhomogeneous plasma. Those properties, which can be calculated ;;
?ﬁ only when the background quasi-equilibria are available, depend on the -
i; results of the present model and cannot be specified a priori. The marginal-
fL stability criteriond < en, €  circumvents these difficulties and is thus

e s
S used in place of 7, modifications.
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€. Fluid Density and Flow Field Time Derivatives

The data base for all the hydrodynamic calculations is the common

i i ie
block FLUID-STATE, containing {Nj, NENT cee,j’ rys rj}. An update of

the FLUID-STATE is the central result of a major time step. The relation-

ships among the basic fluid variables on the Lagrangian mesh are illustrated

in Figure 4. The simple two and three point area-weighted differencing
schemes for such a mesh are discussed in Appendix [II. The cell ions

{Nj} are a conserved vector of ions/cm resident in the (compressible) cell
[irj’ i’j+1]’ assuring strict particle conservation and a solution of the
equation of continuity limited in accuracy only by the evolved values of

fe
{ "j} The alements of {N } are assigned soatial locatwnSJwen by the cell
center position (defined by the equal area point) r //I irz

3 j+1)
They change only if a regridding is called for.
Boundary Variables: Centered Variables: eNi
ﬁhhﬁhhﬁutﬁu) cni oY ¢u B}
N , rans
f5  cPoj Coef.po
ceci ezl
l’.
l'. :
o"i. . ™ a P2
i ? ; faal | E
l ] ]
) aj Mash aJﬂ
Spacing
Notation

Figure 4. The Lagrangian Fluid Mesh
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When needed, the stresses at the cell interfaces are calculated by
the subroutine MESHTRESS. This code has two modes of operation. In the
usual mode, during a subcycle,the acceleration of the interface *Fj is
computed. But at a major time step, the initiation of the subcycle and the

calculation of the Z field sources requires an explicit calculation of the
%

Jjerk rj as well. The fluid stress has three major components as noted in Eq.

(I11.3) above. Each of these stress components: pressure gradient, magneto-

strictive, and ambipolar electrostatic, has a particular realization in
terms of area weighted finite differences (or smooth interpolants if more
precision is needed) that is best suited to‘the mathematical and programming
requirements of the problem.

First, the pressure gradient stresses are most naturally derived
from the mesh structure shown in Figure 4. Using the {Nj} and {iaj} the

: i . .
mean fluid density at the cell center My Nj/(65+1_ aj)v is the quantity

determining the local inertia of the fluid. The pressure gradient stress

is thus easily shown to be estimated (to O(Arz)) by

. .o i R A
r. L, = - r, = -
J "fluid im caj caj-l
(I11.5)
T, - T,
- (2 "j/ﬁ") CaJ - CaJ-l
¢j cj-1

where the area-weighted interface temperature ?} is defined by (cf.

Appendix III also):
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s :{(Ca! _a, ) x (a. - i ) *
j caj - caj-l ¢ j-1 caj - caj_1 cj (I11.6)

for j on the index domain [2, J] with J the maximum number of cells. If
one insists,as in Section III.G on a null heat flow across the outermost
boundaries " and ro+1° then the natural boundary gondition on this pressure
gradient stress is to neglect the temperature difference term and simply
extrapolate the logarithmic density gradient from boundary 2 and boundary J.
The boundary pressure gradient stresses are then estimated by

{ln nlg:ln nIl} >

A T cl (II1.7a)

Iy

¢ T -1

-n n

19-1
} é?d . (III.7b)

Frer! Fruia ® <2 Tyet {

Next one must éstimate the magnetostrictive stresses using ch

and ch and suitable area weightings. The same averaging operation shown in

(111.6) provides the formulation

J_8
s . [lze
rleB (‘:ﬁﬂl)j | (111.8a)

with the boundary conditions

J [
1lgg - _(é 2,1 ¢ e,1) (I11.8b)

c"I,l

J_ .+ B )
“ z,d ¢c8,d Ca
Ferlop '(cﬁ ) : (I11.8¢) -~

cnI,J
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The ambipolar stresses are somewhat more delicate in that their

sources are drawn from both zone boundaries and zone centers. The strict
application of the radial Ohm's law results in an integral equation for

the relative charge separation at any spatial location. To a good approxi-
mation however one may neglect the recursive nature of that relation and
simply evaluate the radial component of E at the cell bcundaries in a quasi-

static sense at any time level. In terms of the axial electron drift speed

u, and the (dimensionless) Braginskii transport coefficients a;\ EL this
electric field is
EJ,r"{[gga::\uz +Eﬁ r Te] ¥ é[ar(re-;‘iTI>
e I
-m—eT 3. tnn, + T 3 &n n]} (111.9)
my I °r I e’r ;; I

and can be defined on the cell boundaries easily, differencing for the

m

gradients in Ng» Mg and Te- 53 TI to the boundaries directly and averaging the
I

strictly central terms to the intermediate boundary. The boundary con-

ditions on Ejr are similar to those on the magnetostrictive stresses with the
addition that, in compatibility with the thermal conduction algorithm

discussed below, the temperature gradient source terms are assumed to

vanish.

The ambipolar space charge is hence o= z% 7 . Er with Er given

on the cell boundaries. But p is most naturally computed at the cell

centers by means of

r E- - T, E;
cpj.z__lr _Ja+_1_.1§lar i-i.r (111.10)
B L3 S
40
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Forming the effective fluid charge-to-mass ratio at the cell centers,

the final ambipolar stress is given by

c

1% -
b’ 3 . . C .‘-:‘.
r‘jIA Ej o (ﬁ;) 5 (I1I.11a) i

with boundary conditions

f
: a ¢ 1
,x],A ) r {ﬁ'——n } (I11.11b)

e
r = cd } . (111.11¢)
1y " R {ﬁ_—'c"I.J

With these expressions, the final output of MESHTRESS is the

sum

LRI + 7 + ¥,
I 3 fuia 3B J‘A

but, at the major time lTevels when the jerk is needed the subroutine goes

further and computes

¥ = Pleaia * Tylos T Vla
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by means of higher-order difference formulae similarly derived, and data
produced by the fluid temperature time derivative calculations discussed

in the next section.

4
X

F. Fluid Temperature Time Derivatives ]

In order to compute the heating rates at the cell centers from the :ii
FLUID-STATE, several distinct steps must be taken. These distinct calcula- ]

tions are, however, collected in the single subroutine TDOT. First one must

recover the electron temperature, mean ionization state and chemical
potential. This is done by the subroutine CREOS (Collisional Radiative

Equation Of State) to which is input the ion density (zn ) and the

I.Jd

electron "grand canonical temperature"” (*8_ .). Using the smooth inter-

ce,d
polants discussed in Section (II.D.ii), CREOS first obtains the logarithm

of the branching ratio and calculates using (II.9a)

in (zTe’j) = In (;ee’j) - 4n (Ebj)’ (I1I1.12)

from which éTe,j is obtained through exponentiation. Both E;s and
2€31,j are then obtained using (II.9b,c) with the logarithmic argument

implied by the relation (III.12). In addition, CREOS calculates the

derivatives of the branching ratio with respect to ee and ny so that one ;:

may calculate material derivatives of ee and Te using

3 3 H -
e dénb)e 3fnbd I .
1‘e *P - Te {(a n e)e— +<a—ﬁn_> "—I-} : (111.13)

e I

The material derivatives of Te are needed for the evaluation of the jerk

as well as for diagnostic purposes. If the jerk evaluation is being done, - o
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then CREOS continues with a calculation of 32 2n b/3(fn ae)2 and

32 2n b/3(2n nI)2 as well. -}ﬁ
The next operation is the establishment of the transport coeffic-

1 9 * * %* *

ients on the mesh using the data base {cBe,j’c j? cnI,j’ cTI,j’ ;Te.j’

235} supplied in part by CREOS. This procedure is complicated by the need
to 1terat§ on EBej (through EJj) because the conductivity Ezj depends on
the magnetic field. The details of this iterative refinement are discussed
in Section III.G(ii) in the appropriate context of the subcycle algorithm.
In essence, any call to BRAGINSKII, given the data base defined above, will
produce the needed transport coefficients to go further.

The establishment of the transport coefficients and temperatures
is necessary to calculate the thermal diffusion rates. This calculation is
presently done in conjunction with the compression heating (*Q(pdV). =
-g(v . F)j sz) by the subroutines VTGRADS and VTDIFDER. The module VTGRACS
(velocity and Thermal GRADient Sources) produces arrays containing the area
meshes Q. , c*aj} and the discrete velocity, temperature and conductivity

* *. - » -
data {ETej’ cxej’ lej’ ETIJ’ aj} in a suitable form for use with either

the smooth interpolation package or the area-weighted differencing moduie
VTDIFDER (Velocity and Thermal DIFferenced DERivatives). The boundary
conditions enforced by VTDIFDER are those of null heat flow across the outer
boundaries *r] and *rJ+1. This is done by means of ghost points playing the jfﬂ
role of cell centers Ero, ErJ+1 (cf. Fig. 4) and the use of simple variable- :
mesh three-point differencing formulae. This yields the output array ;f%
TOOTGE:  (3(3] Tyl 2(33Te)yr 20%e)ge 200ax1)50 8034Tr) o 235 Tp)yo -

g(aa_&)j}. These results are used in calculating the thermal diffusion rates

= D) e 2 ;;_-J
"(Qg)g = *(4 %, 3, Tg * 4aldyx, 3, Ty + x, 3 Te))j (IL14e) =
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X, aa TI * x93, TI))j (ITI.14b)

- I
*(QI)j = *(4 KL aa TI + 4a (aa C

" _
RAREA B

The compression rate (V «V ) is of course the last item listed above in

; _
% TDOTGF. i
‘? With the gradients available, one may now evaluate the thermoelectric ;3;
6 fields and calculate a local drift speed for the conduifion curren§ Jz :f%
ff using the free electron density, the complete E field Ez = E; + Eth’ and <
g the classical conductivity o . At each cell center this drift speed is
f: compared to the local sound speed; if greater, it is lowered to the ma;ginal f;;
: Stability Timit usc,. With E, fixed, the drift-speed limit thus imposes i
ié a decrease in the effective conductivity of any cell. This new conductivity :f,
;? is set such that Ez * Opurp = @MeCq» and it replaces the classical conduct- ;%i
3 ivity orginally computed. The ohmic heating is also radically altered when ;?
,g the drift speed 1imit is imposed. It is calculated here by means of the ;Z
' product Jz . Eé, which is explicitly indpendent of the conductivity but ;é;
¢ reflects it in any limitations on Jz. The usual heating rates are thus ?
% complietely specified by the calculations summarized thus far; only the B
;; radiative coupling remains. %ﬁ%
i; The radiative energy transport calculation must be done for each
? radiative category one wishes to treat. At present a vector of emission _5
he rates Eej is calculated by the function CREMIT for each of four classifica- .:.l
3% tions: 1line radiation hv < 1 keV, line radiation hv >1 keV, free-bound -4
53 continuum, free-free continuum. This function contains preprocessed fits to ;;
%ﬂ the CRE model emission strengths in lines and free-bound continuum, and a
P: simple free-free emission model. A companion function DAMPIT calculates a
53 vector of damping rates Edj using attenuation estimates appropriate to each
. radiation category. Once the data base {zej, :dj, *rj, Eaaj= *aj;l-*aj h
4
53 “
3
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is computed for a photon in category p, one may calculate a coupling matrix i;
for this category. The coupling matrix is related to the directional deriva-
tive of the probability of escape PE( o Jplz .), where lij is the path Tf:?
length from cell i to cell j along a chord inclined to the radius vector Eﬁ
: through cell i (Apruzese14). PE is a8 nonlinear function of the path- g
; integrated optical depth, depending upon the radiation category's damping ’;?¥
‘ mechanism as well as the local attenuation parameter values. The line 3
. radiation'categories use PE functions based on a Doppler line profile, while

the continuum radiation categories use a PE which is exponential with optical
depth. The “13 represent geometric projection factors needed in the (dis-
crete) path integral estimate and can be calculated for all radiation cate-
gories once the mesh *rj is given. The coupling matrix can therefore be

defined as

Y N A N BT U
i L AU AP
R e VIR L e,
patent, £ R R R o

v
{ e

+ -
X

) XJ'
c”p = PE(p,f dxt(d(x))) - PE(D’_[ dyt(d(x))) ,

X X
i 1

where x is a path distance and ij = x; -x} is the cell thickness, along

the inclined chord. In terms of the coupling matrix, the energy lost or Efﬂ:

gained by a cell is the inner product

Qphoto i° Zp (éepa N ; Cijp zepi) ;

while the energy lost from the plasma, the observable output from any cell

in any radiation category, is the residual sum

Q

== % ° - -
out,jp CePJ' ( %Cljp) )
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These operations are done with the aid of tkree subroutines,

SPFACX, SPHERX, and PINT due to R. W. C]ark15 . The first computes the

J
inclination of the chord through each cell. The second and third act in

projection factors zi' from the given mesh *rj for any particular angle of

concert to producg the coupling matrix from the data Edjp and zij'

subroutine PINT produces reauired path integrals of escape probability in

The

either Doppler or exponential mode, while SPHERX produces the coupling matrix.

The subroutine TDOT contains all of these calculations but provides
options for bypassing those not needed for the iterative refinement of the
magnetic field. These mode switches are contained in the common block
TRANSPORT-CHOICE (along with the CONTROL matrix for subroutine BRAGINSKII)
as the logical variables: PHOTONS, JSET-ONLY, EOSMODE, and DBLE-DOT-MODE.
Of this set, DBLE-DOT-MODE is referenced by CREOS as well. The flow of
the subroutine TDOT is illustrated in Fig. 5, and is essentially the same
sequence of operations discussed above if no bypasses are taken. The
required fnput is {28,., &Tyys ;FJ., *?-J., Ny s &5ty XES, 28D

The output is divided among the common blocks TDOTOUT, containing:
{;ﬁx,j,;fl,j, ;fe’j, %04,4> and *Qp,q 5o} and CRADS-FIELDS, containing
temperature gradients, compression rates, thermoelectric fields, total plasma
electric fields, classical or limited axial current densities, and (if
DBLE-DOT-MODE is .TRUE.) information required by MESHTRESS and HERTZDOTS

for higher order time derivatives.
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FIGURE 5 - Flow of Subroutine TCOT
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Ef G. The Subcycle Calculating Thermal and Electrodiffusive Evolution

tﬁ in_the Model Plasma

gn A subcycle is preferred for thermal conduction (and other dissi- ;f
ié pative processes) because the parabolic p.d.e.describing the evolution is f;?
S} often treated best by an implicit method, while the momentum advance can Ei
v often be adequately treated by an explicit method. Also, from a physical a;?
5% viewpoint, the fastest timescales of the model plasma are those associated 3
:g with electron/ion thermal exchange, (unmagnetized) electron thermal conduction

X and radiative losses (under conditions of strong compression). The solution ?
?ﬁ of the thermal evolution relations (III.4. a, b) for a fixed level of ;f
j% accuracy will therefore require more time derivative evaluations than an

% equivalent solution of the velocity field relation (III.3), even allowing

ié for some iterative refinement of the mesh motion. Finally, as a matter of

'% flexibility in algorithm choice, the subcycle allows one to separate the

f: thermal evolution from the mesh evolution within the code an&, therefore, to

ﬁ% select possibly distinct time-advance mechanisms appropriate to each.

s

.

The thermal subcycle presently implemented derives from the observa-

tion that a spacetime . p.d.e. which has the derivative operations represented

0

by discrete differences on one domain of dependence appears as a coupled

e

:f set of o.d.e. on the orthogonal domain. The particular case here is that of
Agi spatial differential operators, corresponding to finite difference operators
i?% (derived through conventional or smooth interpolants), producing a set of
;:: coupled equations on the time domain. In all such cases the coupling of the
_%§ time derivatives is expressed as a Jacobian matrix, implicitly dependent on
:Eq the discrete mesh used for the derivative operators. Here the time deriva-
:i tives are the material derivatives {+e’ ée’ éz}andthe underlying mesh motion
N {r, r, ¥, ¥} 1s completely transparent to the subcycling algorithm. The

%

b three fundamental codes for this process are described below.
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(i) GEARBOX, the subcycle integrator 1?3

Based on a multi-time-level variable order scheme, the subroutine -—j

GEARBCX performs the thermal subcycle on a time domain [T1o, Thi] defined T
. . i, - i i i ]

?xternally. The Tnput consists of Yj {..., éTI,j’ ceej’ cTI,j+1’ : %
’ee j+1...}, initial data for a total of 2-J coupled equations of motion. ;:1
[ e/

The time-dependent mesh (with which the thermal fluxes, compressional heating

and radiative cooling are computed) is specified implicitly aver this interval

for Tlo < t* < Thi. The forward integration of {Yj}is done by the IMSL
subroutine DGEAR, using the material derivative subroutine FLUIDOTS and the
coupling matrix (Jacobian) produced by JACOB. In the environment seen by
DGEAR,the problem is specified completely by the input {in}, the interior
material derivatives {*?j}, the coupling matrix *(a?i/an), and the inter-
mediate time points t*. Values of t* are chosen by the integrator, in
'accordance with the rates of change produced by FLUIDOTS, and these values
are thus the sole input arguments available for the specification of the

Lagrangian mesh *rj.

To summarize the operation, GEARBOX begins by checking for an upper
1imit in the explicit timestep supplied as input whenever the integrator is
being initialized. Next the explicit time Timits set as arguments are
stored in the common black <TIMEBASE> for use by FLUIDQTS and JACOB in
implicitly advancing the fluid mesh. If desired, a short report on the model

thermodynamic variables is written. The actual integration is effected by

a call to DGEAR, and upon completion various error flags are checked and the
severity of any integrator errors is assessed. If desired another short
report on the evaluation is produced; and, if a terminal integrator error

is found a completed dump of all pertinent information is triggered. The e

{i+1

subroutine returns with a new (provisional) vector Yj} overwriting
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the original input. The advanced temperatures are either accepted or
iterated upon in the calling routine, depending on the chosen option for the
fluid mesh evolution.

The integrator DGEAR offers several control parameters and con-
siderable flexibility in the integration scheme. The most important options
are the use of explicit Jacobians or estimated Jacobians, and the control
of the local truncation error through a variable TOL. The explicit Jacobian
is apparently the most favorahle option in this hydrodynamic application, but
if the application of more detailed physics demands a very expensive evalua-
tion for this matrix, an estimate based only on finite differences is adequate.
The variable TOL provides a natural and consistent means of specifying time A
integration parameters for the mesh evolution as well, cf., Sections (III.H.i & ii). fi‘
The integration scheme can be selected as either an implicit Adams method of -
up to twelfth order or a backward differentiation method of up to fifth order
(Gear's stiff method). Both methods are of the implicit linear muitilevel éi
type and require the solution of an aigebraic system at each interior (sub- fi
cycle) timestep. The basis for an optimal choice between the two lies in
the performance of several benchmark calculations discussed in Section III.I
below. _ %Ei

(i) FLUIDOTS, the material derivatives

The physical content of the problem is defined entirely in the
subroutine FLUIDOTS, which incorporates an explicit time advance of the
data {*Z,, *arzk,*rj} in order to define the mesh and electromagnetic fields
required to compute *?j. In summary, FLUIDOTS receives as input {*Yj} and
t*, which {s any interior point selected by DGEAR on the <TIMEBASE> for the
calculation of a derivative. First FLUIDOTS maps *Yj to separate variables

-

*le, *eej’ Next the mesh is obtained by a forward Taylor series using
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whatever information resides in the common block MESHADVDATA:

e = 1 - i 1 -
r, r + (t* - Tlo) £ *s (t* - Tlo

2 i
3 )

Fjo+ gl - Tlo)®

R ERIDE A G DL
This mesh is checked for inversion {*rj > *rj+1} and if such inversion
occurs a terminal error condition is generated and a dump of all pertinent
information is obtained. The mesh is also checked for closure of the annulus
(*r] < 0) and, if closure is sensed during a subcycle, the motion of the
innermost cell boundary is corrected, *r] +0 & *F] + 0. Once these opera-
tions are complete an array of cell centers is generated by equal areal
partition and a central velocity sz is assigned by area weighting. A cell
jon density is also calculated from the (conserved) particles resident in
the cell.

The switches EOSMODE and JSET-ONLY are then set for a complete
TDOT calculation. If electromagnetic effects are turned off this single

TDOT calculation proceeds. If, as is usually the case, the Ez and Be are

needed then JSET-ONLY is set .TRUE. and ZPUSH advances the Hertz potential

from its last data base {iZk, 1-aTZk} to its values at t*. Given the results
of ZPUSH, the subroutines EFIELD and BFIELD are called to establish Ez
completely and By partially, using the current densities of the previous

T point. Using the provisional EBej’ a call to TDOT with EOSMODE and
JSET-ONLY set .TRUE. recalculates the central current densities at fixed

Ez and estimated . A second call to BFIELD uses the new current densities

and thus implicitly refines I{(B). After one refinement pass (TDOT;

- -

BFIELD), EOSMODE is set .FALSE. and the initial calculation of ?E{j’

..................................................

------------
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zja, and ETeJ remains in place. The gradient calculation remains undisturbed
as well so that the Ez thermoelectric field component will change only
through the refinement of its Be-dependent coefficient., The refinement
passes continue until {gBej} convergence is achieved to a specified tolerance
or until a maximum. number of passes has been made. Then JSET-ONLY is set 5
.FALSE. and a final call to TDOT calculates the full complement of material -
derivatives and transport coefficients using the self-consistent magnetic
field values. In this final pass the gradients are recomputed because the
thermal conduction has changed with the magnetic field refinement. If
magnetic field convergence is not achievec to the desired accuracy, e.g.
0(10'4), the vector of fractional changes at the last iteration is output as
a diagnostic, and if desired a full report of the calculation is output
as well. ;;'
The last operations performed by FLUIDOTS are to map ge ej’ ZfI,j ?
to the single variable *?j and to update the acceleration and jerk arrays :
1Pj, irs if required. An update of these variables, contained in<MESHADVDATA>,
is triggered within the subcycle whenever t* is larger than any previous I;
time argument requested T'>T1ast’ or if t* = Thi., As discussed in the following
Section I[II.H, this enables one either to correct the mesh evolution
smoothly as temperatures evolve or to set up for a complete fterative

refinement of the mesh evolution. The mesh update occurs with a call to

. MESHTRESS and, if DBLE-DOT-MODE is .FALSE. as is the case during a sub-

~ cycle, it involves only the explicit recalculation of the acceleration '?

array *Pj. The jerk array is continually updated as

T ¥
I—l—J— T*

T L =
3 ™-Tlo » last

for t* > Tyast’ When FLUIDOTS is called outside a subcycle, DBLE-DOT-MQOE
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is set .TRUE. and an explicit evaluation of the jerk array 1?3 is obtained T
’,»'i

as well.

(iii) JACOB, the 1ink to the original p.d.e.

The coupling matrix calculated by JACOB is a simple if lengthy
exercise in the use of partial derivative chain rules. In the case of a
simple three point difference formulae this matrix is slightly sparse and
pentadiagonal. The compression and exchange heating create a block-tridiagonal
band dependent on (V -V ) and the local Te’ while the theqnal conduction
operators add two more bands and some diagonal contributions. In the case
of a smooth interpolant (G or E-spline) the matrix contains more nontrivial
bands of monotonically decreasing importance away from the diagonal. The
rate of decay is determined by the éoupling parameter choice in the under-
lying interpolant. ' _

However one defines the differentiation pracess, the general form
of the Jacobian is easily derived from the structure of the subcycled array
{Yj}. For all entries involving the material derivative of ee the local

value of the branching ratio is the element of central interest, i.e.

aez,_i<l_3£nb) 365
®, 5, T 6)y  TMom

while only on the first subdiagonal does 8 couple to TI’ since

2m oo

38 .
37'%3 - }

mILe’J

apart from some radiative contributions due to the cell's self-opacity.
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In a similar manner the entries involving the material derivative of TI

couple to 6 only on the first super-diagonal, i.e.

.'ln.:..,. ) : LN ‘l ¥
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aej bj . d&ne 3 mITe,j

The coupling on the main diagonal consists of several contributions. The
primary one is compressional heating (- %-V-V), with exchange losses and the
term from the central coefficient of whatever gradient formula is employed
in computing the heat flux also important. In the case of ée a radiative
diagonal contribution aiso arises.

The general Jacobian structure obtained for a three-point
difference scheme is illustrated ih Fig. 6. There compressional heating is
denoted by @ on the diagonal; the ion-electron exchange terms are shown by
Xx; and the contributions from the spatial differencing in thermal con-

duction are denoted by A.

Figure 6 - A simple Jacobian matrix

T15 | %es |T1se1 [Peger |T1g+2 |Oege2
YRR X | aex A
PYRILTRIE & 48X | X A
¥y (5+1)(Bage) A X | aex A
Vo543(trge2) A aex | X
Vo) Beger) | A X | a8x




The inclusion of radiation terms is dependent on the coupling

matrix summations discussed above in computing Q It is a straight-

photo’
forward but more compliex calculation along these same lines.

(iv) Modifications for E, diffusion
If the option of diffusive evolution for Ez is desired, an
‘ alternate trio of subroutines is employed. The vector Yj now becomes
,% (o 8Tyys 2Epq» 28gy---} in analogy to the structure used in GEARBOX.
This implies a Jacobian which is block pentadiagonal with further bands
added depending on the spatial differencing. The routine GEARBOX is
replaced by TETGEAR; FLUIDOTS, by TETDOTS; and JACOB, by TETJAC. The
routine TETDOTS contains most of the principal differences; it must call
an additional subroutine EDOT which evaluates equation (III.2). The
iterative refinement of Be appearing in FLUIDOTS persists, buf the
external circuit equation requires an iterative refinement of Esz and
Eézj,together in order to achieve a self-consistent prescription of the
boundary conditions for equation (III.2). Once the values of zfej’
z?j are established by TDOT and MESHTRESS, however, all iterative refine-
ment can be made internal to EDOT. The flow of TETDOTS is thus quite similar
to that of FLUIDOTS with an additional call to EDOT prior to the final

raturn.

H. The Complete Fluid Evolution Package - HYDROPUSH

———

A11 of the foregoing algorithms are combined in the subroutine
HYDROPUSH ,which forms the nucleus of Program ZDIPR -apart from startup,

diagnostic and graphics modules. HYDROPUSH is concerned exclusively with the




X - T4 N . S I C S o D TYL YLy I S T
vy ]
3 3
,§ advance of the <FLUID-STATE> over the variable major time step which it 3
i

selects as appropriate. The only required inputs are the common blocks :;
{ <FLUID-STATE> and <FIELDADVDATA> (containing the previous time slice of l

; fluid variables and field variables) and the appropriate mesh dimension,

x scale factors and physical constants,obtained from a variety of sources.

é The output is an update of <FLUIDSTATE>, and an increment of the variable

: MSI (Main Step Index) by 1. If a restart file is desired, it is created

g; for later use and assigned a record number equal to the MSI. If any severe

;; errors occur in the advance, dump files are created to allow examinafion

12 of intermediate results, and a variety of reports at intermediate phases

:? of the calculation are available as general diagnostics. The architecture

;; of HYDROPUSH assumes that, after the fluid advance is successful, the

‘%j main program will call ZPUSH separately to advance the fields 1.Zk and :?
E} 1arzk - unless the electrodiffusive approximation is being used. In that :

case HYDROPUSH will also advance the Ez field by means of TETGEAR. ?;

§ The sequence of processing begins by reading elements of the

«ﬁ‘ <FLUID-STATE> into <MESHADVDATA> and the subcycle vector {in}. Once *
;S the appropriate data base is inferred a full complement of material deriva-

5; tives is computed by FLUIDOTS/HERTZDOTS or TETDOTS. These material deriva-
3%‘ tives,including the fie1d‘i(32 Jz)j or E 2§ 2re then used by STEPPER to

_;ﬁ select a major time step. The environment of either GEARBOX or TETGEAR ?E
;é? is held if one wishes to iterate the mesh evolution (GRIDITER=.TRUE.). ;;
ji} Otherwise a single subcycle is done (advancing 1+1Yj, 1.*'lr-j and 1+1?j) ;
and the new FLUID-STATE is output.
f%g The iterative refinement of the mesh evolution is accomplished by E%
;é? first making a predictor step with the jerk continuously updated over the il
:
ﬁi 56 H
b j
SR R e i e . _‘j




subcycle. At the end of the first pass the GEARBOX or TETGEAR environ-
ment is reset to its content at the beginning of the subcycle. Then the
full compliment of material derivatives is explicitly extracted from the
{provisional) advanced fluid data, and the jerk coefficient is overwritten
by a linear combination of its values at the beginning and end of the step.
Further passes over the subcycle use progressively better estimates of the
Jerk until convergence in the linear combination coef%icients is achieved

or the maximum allowed number of corrective passes is reached. A final

pass with the fully self consistent MESHADVDATA is then executed to obtain iﬁa

the most accurate thermal evolution. The resuiting, time-advanced GEARBOX/

TETGEAR environment is left in place and the new <FLUID-STATE> is output.
The general structure of HYDROPUSH is illustrated in Fig. 7; the
details of the time step algorithms and the iterative refinement scheme

are discussed in the subsections below.

(i) Time step considerations
Over a subcycle the steps are controlled by DGEAR, but the assign-
ment of the proper <TIMEBASE> must be based on those rates not accessible
to the subcycle integrator, viz. Ore, Yo, 1?3, l(a"d ). or ZEZF. The

J T2 o
comparison among these rates, and those time steps derivable from them, is -

accomplished by the subroutine STEPPER. ‘
The velocities, accelerations, and jerks of the mesh can be used
to formulate several distinct time step estimates. First is the magneto-
sonic Courant-Fredrich-Lewy (CFL) condition, which seeks to insure that the
spatial domain of influence on future values is contained in the domain

of dependence established by the finite differencing algorithms which pro-

- -

vide the acceleration. The domain of influence is specified by the most
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rapid signal velocity physically significant in the fluid, which for the

present application is the magnetosound speed

3 2\ %
Vi 3(5(3&4. TI) + s

mI 4mp

The domain of dependence faor the pressure gradient stresses is at least two
complete cells, so the distance of propagation is one cell width. Since the
cell is generally either compressing or expanding, the disturbance propaga-

tion is superposed on the relative boundary motion, and

i R i ie ie
CFL
with 5] in the range %-* %-fbr explicit mesh integration and perhaps as

large as %-— -87- for implicit evolution.

A second criterion is the Local Truncation Condition (LTC) based
upon the highest time derivative of the forward Taylor series used in

advancing the mesh L

F&. Since area weighed differencing is the basis of the
gradient calculations the highest time derivatiQe's contribution to the
relative cell area change should be (approximately) the truncation error
GGEAR of the integrator (the GEARBOX variable TOL) multiplied by the

typical number of subcycles expected, i.e.

i

YU S SN N

EAR’ e
A third related criterion is the relative cell area change itself,

with §, v (5-10) - N N

calculated through second order in the Taylor series - the Quadratic Cell

59
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Area change (QCA). With Aaj = aj+1-aj and similar notation for the

material derivatives, an expanding cell will grow by a fraction & in

where § may be set in the range 0.08 - 0.20. A similar expression exists

for the fractional shrinkage of a contracting cell, and the fArj! }is
QcA
just the collection of such estimates. A cell destined to change from

(F PaZaly

2 contraction to expansion (or vice versa) over the time step is excluded
'3 from the selection algorithm.

fJ A fourth mesh-based criterion is the time for collapse on axis.
3 If the innermost zones (r] and rz) are projected ahead using the Taylor
% series coefficients, then one seeks a time which allows the first to

3 intercept the axis, but not the second. After the first has collapsed,
2 only the time for axial interception by the second is relevant. The

‘3 collapse time iArc is then appropriately set in between these two.

Es

Finaily a step &rL”‘ can be set by insisting that the relative
changes in wave sources or diffusion sources, i.e. arJ’ £ be bounded by a

fraction similar to that 1imiting cell area changes.

TR Ad R

The subroutine STEPPER calculates these varijous time steps

&>

x {ATICFL’ATILTC’ATIQCA'ATIC , ksz-and then assigns a final At as
< . ; :

! Tar = min;inf far, | inf faegl inf Tagl e
) i et tre 3 Jqca

4

» inf 'at,| f :

| 3 Jem

A

FJ
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This provisional At is then checked for any danger of mesh inversion by o~
advancing the mesh to the end of the interval. If a mesh inversion is
implied the step size is cut by a factor of 0.9 and the test is made -!
again. This procedure continues until either the step cuts prevent the 3
inversion or the original step has been cut to a tenth of its original
size. In the later event the calculation proceeds with a warning of possible ?1

inversion. STEPPER then outputs the new end point (Thi) for the subcycle

integrator and an estimate (delTmin) to be used as an explicit step if the

time stack internal to the DGEAR integrator is to be reinitialized.

aTe e [
S YOS
P .‘&A-4;» o

(i1) Explicit and implicit mesh advance with HYDROPUSH
The simplest mesh evolution available is an explicit advance using

the Taylor series coefficients at a single time slice,

e 2
*s . UL/ S

The local truncation condition in STEPPER insures that this Taylor series

receives a small contribution from the highest order (and potentially
most noisy) term tr&. In order to minimize the global accretion of what-
ever error might be added in any one such time step, however, it is

necessary to insist on an evolutionary self-consistency in the advance of :4¥

the acceleration fields and the jerk fields. A consistency determined at the
future <FLUID-STATE> by the position, velocity and temnerature fields and

axternal stresses. —
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One way to help provide self-consistency is to alter

the subcycle by examining the acceleration values obtained (*Fj) and

revising by the rule,

b *E - P,
*r = _J_—J.
J *AT

continuously as the subcycle progresses, the superscript « denotes a

forward time ordering. This is tantamount to choosing a (variable interval)

time averaged ?3 for the mesh advance, and clearly has a cumulative but
distinct impact over the subcycle on the position and velocity fields.

For the grid *rj this version implies a local effective acceleration

e PR (U
Fy= B3 (5 - F),

while for the velocity, the local effective acceleration is

e e g (g - TRy
These effective accelerations appear to be available only for future
subcycle times — *?j is the acceleration derived from the fluid upon
arrival at t* by means of the Taylor series coefficients previously
computed. The GEARBOX integrator is not always committed to a monotone
increasing march in t* however, so that any mesh required when it "backs
up” should reflect the forwardmost Taylor series information available.
For this reason the material derivative codes FLUIDOTS and TETDOTS keep
track of the times t* input to them and perform the revision Of.rﬁ (and

hence the calculation of the effective accelerations) if and only if
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the given t* is the largest time argument seen thus far in the subcycle.

This approach therefore continuously updates the Taylor series on
an ever broader temparal data base in order to follow the general trend of
?3 instead of just a single value. The explicit (arpredictor) phase of
HYDROPUSH is just the implementation of this algorithm.

On the other hand, nothing guarantees that the smooth changing of
13 is sufficient to provide true self-consistency in the motion. At the end
i+1?j. The first is available
from a time slice of advanced fluid variables ?jF(i+1rj, i+1}j. i+2TIJ-,
i+éaej’ i+1Ez), the second is that derived over the time step using the jerk

irl, | 2 I + t° <
rj rj At ?3.

of a subcycle there exist two versions of

coefficient

The mean value theorem guarantees however that at least one value
i+l..

‘i
exact to all orders. The essential thrust of the implicit method described

of (on Tlo < t* < Thi) exists which makes the second version of

here is to find that best value A‘?'J. for each cell which provides a soclution

to the nonlinear difference equation

(ST TS N TS P S M S UNNE 5 MR 1S A 1S M
T L R L L L R oL
1.. i A‘.
e F . .
Fif At r'J

to some specified precision, e.g. the TOL in GEARBOX. Here the accelera-

tion at the new time level depends on the entire time history of the fluid

variables computed over the subcycle. The most general method of solution

fs to iterate across the subcycles. This is accomplished by representing

LA A . . "“.1“'-'
N Te . ' -4 . ¥
A LA AP PR {
L

the unknown best value‘Lrs as a weighted sum of the (explicitly calculable)

end point values, viz.
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and iteratively computing 6j by several passes across the subcycle until
convergence (in aj) is achieved. At any iteration (p) the new Gj is
computed from the implied new fluid state (using the last sj vector) and the

original fluid state by the required solution of the difference equation,i.e.

1, i )
s -1 "iF iF) i
pJ = - - 7,
1Ar JF
i+1 i '
1M = Ty

The jerk coefficient (embedded in MESHADVDATA) is then updated to be the
current estimate ofATEF given above and the entire subcycle is recalculated,
completing the loop. Convergence to a particular vector Gj is thus equiva-
lent to a solution of the difference equation and, in the limit of small time
steps, any soiution of the difference equation closely approximates a
solution of the original partial differential equations. In the implicit
scheme of course the revision of'Pfj during the subcycle is suppressed.
The present imp1emehtation of this scheme in HYDROPUSH relies
on the simple replacement a]gorithm discussed above in order to find dj.
It is probable that convergence can be improved by using more sophisti-
cated estimates based on the iterative sequence {psj} p=0,1,2,3.., but the
best such choice will come from examining the algorithm's performance
and thus cannot be selected a priori with any certainty. It is also
probable that the inclusion of previous time levels (i-1, i-2...) in an

estimate ofA?'would be a means of filtering the noise that might develop

in this variable, and general methods of effecting this extension are

under study.




....................
--------------

I. The Planned Sequential Benchmark of This Method

a) Checks on internal energy conservation

On a stationary mesh (no compressional neating or expansion

{
cooling) with radiative losses disabled, an initial separation of T, and };j
Te (ee) will relax inhomogeneously when the (time invariant) ion density ?
varies in space. As a test of the subcycling algorithm,the time asymptotic ‘t{
final state (TI = Te (ee) = T for all values of r) must contain the

same internal energy as the original. Preliminary tests with uniform ion f?;

density (and uniform relaxation) have demonstrated this energ& conserva-
tion to 0(1073).
b) Checks on the conservation of kinetic and internal energy
There exists a class of self-similar Gaussian implosions and
explosions for which the time-dependent density scale length (or any other

Lagrangian marker radius) varies as

it +(1-(1+YE)r)
{5

with Y ® initial thermal energy/initial flow kinetic energy. These flows

remain isothermal in space at all times (removing the effects of thermal

conduction) and heat/cool ee and TI equally (removing the ion/electron

thermal exchange. It is thus a necessary check to insist that the algorithm

preserve this flow locally on the mesh and also conserve the sum of flow
and internal energy globally in time.
Once these benchmarks are obtained the numerical performance of the

code can be properly optimized with respect to mesh density, time step, and

convergence criteria. ST
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?j c) Checks on the conservation of kinetic, internal and magnetic
field energy
For a strict MHD model plasma with a fixed (constant) current, the

self similar solutions due to Felberl® provide oscillatory trajectory

e e Lt
NS LA , ;

families for Gaussian implosions. One makes contact with these in the

7 present model by legislating a particular current profile, and by neglecting
>y

1 ohmic heating, ambipolar Er stresses, jonization dynamics and radiation.
o

A The resulting motion can then be compared to the analytical results over
1 several oscillations, and the energy interchange among these three reservoirs
'ﬁ monitored with regard to its global conservation in time.

3

-51 d) Examining the process of collection

“i A final basic study involves the filling of the central cavity by
%"3

:% an initially annular load. In cylindrical geometry this process is quite
3} similar to the diaphragm problem studied by A. Lapidusl7 and a detailed
5 comparison of numerical results will be useful in assessing the shock and
kY

A rarefaction resolution capabilities of HYDROPUSH. In the limit of large
A

éﬁ radii the annular diaphragm evolution is very close to the corresponding
i planar problem for which analytic flow solutions are known.
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APPENDIX I: VAX INTERACTIVE INTERPOGLATION PACKAGE

As an illustration of the commands REPRESENT and EVALUATE, the —
following calculation erroduced the G-srline coefficients of the branch- '1
ing r3tio in Alusinumr cf. Charter II.

The file of inrut data resides on (CHEMNODE)>, I.E.

FILES CHENNODE

Pirectory .DRAL:CIPRL.HYDRO.CHEM]

CRE1S.DATHY 7711 12-AUB-1901 18:42 (REIRWEr»)
CRE17.DaTH1 7711 7-AUB-1981 09130 (RE/RWE,»)
CREL1Y.DATHL 7/11 19-AUG-1981 13312 (RE/RME,+)
CRE1PDR.DATIL 8/11% 20-AUB-1981 146141 (RESRWE»s)
CREI9LTER.DATH 7/11 26-MAR-1982 16148 (RERWErs)
CREL9LITB.DATI1 - 7/11 20-AUG~1981 14137 (REIRUEs+)
CRE19ZE.DATH1 7/11 20~AUB-1981 14317 (REsRWEsy)
CRE21.DAT3 1 7/11 7=AUG~1981 09232 (RESRUYE,»)
CRECLAN.DATI 4/11 23-MAR~1982 20348 (REsRWE»+)
CREXLAN.DATSI 3711 19-MAR-1982 10232 (RE!RVWEs»)
CRELLAN.DATS 4/11 23-1AR=-1902 13139 (REsRWE»s)
CRERLAN.DATIL 4711 26~HAR-1982 13126 (RESRVWE»,)
ENITALC.DATIL 3/11 23-1AR-1982 20146 (REIRUEss)
ENITALK.DATSL 3/711 19-MAR-1992 10121 (RE>RWE»»)
ENITALL.DATIE 3711 23-MAR-1992 13129 (RERUE»>)
ENITFILE.EXE}L 19722 17-1AR~1982 14219 (RE/RWE~r,)
COSFILE.EXE)L 8/11 19-AUB-1981 11319 (REsRHE»,)
EOSFILEXP,.EXEN L 10/11 19-AUG~-1981 11220 (RE,RVWE+s)
RCRSECT.DATS 3711 17-MAR-1982 14:20 (RE,RWEs»)

Total of 19 files, 121/220 dlaocks.
and is newed CRE1PLZTB.DATI1. The command REPRESENT IS

SHOW SYNBOL REPRESENT
REPRESENT = QCONNANDS:REPIT.COM

TYPE COMMAMDS(REPIT.COM

€<<<< REPRESENT FILENAME »>>

P1
ASSION ‘P1’.DAT INFILE
INGUIRE P2 *UHAT NAME DO YOU W1SH FOR THE OQUTPUT FILE? ENTER IT,PLEASE.®
ASSLIGN ‘P2’.DAT OQUTFILE
ASSIGN ‘P2'H.DAT HEADER
ASSION/USER.MODE SYSSCOMMAND: SYSSINPUT!:
RUN UTILITYIREPIT.EXE
1<<<< PROMPTS WILL BE GENERATED FOR FURTHER INFORMATION. »ii>
DEASSION INFILE
DEASSIGN OUTFILE
DEASSION HEADER
FILES 2.DaT

and its use is indicated by the sbove command file.
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EX NS ¢

. rhdts
P T v §

i

REPRESENT CHEMNODE !CRELI9LZTH
WHAT NAME DO YOU VWISH FOR THE OUTPUT FILE? ENTER 1T,PLEASE.: LAMZTB19¢
WHAT I8 YOUR SPLINE CHOICE?
ENTER °*GSPLINES.*,»°ESPLINES.*»OR °*EI2SPLINES.*
‘BSPLINESS
DO YOU WISH INSL ACCURACY CHECKS?
‘YES’

oy S
L >3 > E> + 4
RNT 2 ) =

3y
e

ENTER Th! DIGITS OF PRECISION FOR YOUR INPUT FILE.
DO YOU WUISH INSL ITERATIVE REFINEMENT?

;2! ‘NG
}3 AMRE THERE BOUNDARY DERIVATIVES IN THE INPUT FILE?

¢ ‘NQ’
;g ENTER THE NUMBER OF X~-VALUES IN YOUR INPUTFILE.
e, :1
P ENTER THE NUMBER OF FUNCTIONS ( F(X)) TO BE FIT.
’ 3

THE ASSUMED FORMAT OF YOUR INPUT FILE IS: (1X»1P4D25.15)
ARRANGED AS X(I) F1(X(I)) F2(X(1))...IN EACH RECORD,
WITH ONE RECORD FOR EACH X-VALUE AND B.C.
DO YOU WISH TO CHOOSE THE WIDTH PARAMETER?
‘TS’

- .
bl

ENTER A VARIABLE MESH SCALE FACTOR (0.200» 5.0D00)
0.442300
THE CHOSEN AND DEFAULTED CONTROL PARANETERS ARE!
DASE POINTS,4+B.C . EPS_CONV , IDGT » ITMAX

1 o
3y

f : 31 31 1.0000000000000000E~-02 S 0
N B.C. DESCRIPTORS

ny 0 0 0

= BEGIN SMOOTH INTERPOLATION WITH GSPLINES:

0% MILD INSL ERRORS, DO YOU UANT THE DETAILST (“YES* ar ‘NO )

.

*
7 ‘NO’

PROCEEDING TO INTERPOLATION ANYWAY WITH 1ID6T= S AND IER= 34

THE FORMAT OF YOUR OQUTPUT FILE IS! (1X91PSD25.13

ARRANGED A8 X(I) » DCI) » LI(I) » L2(I)¢es 1IN EACH RECORD

UITH A HEADER FILE: D1 TITLE BDW DINM...ADDED

FILES CLOSED. o

A2 Directory _DRA1:CIPR1.NETNODE] -

s LANZTB19.DATI ’ 8/11 26=-APR~-1982 14142 (RUED,RWEDIRWE:R) ;f
LANZTILIIN.DATIL /711 26~APR=-1982 14142 (RUED,RMED,RUE,R) oL

Total of 2 files» 9/22 blocks. K

‘.‘.: -
‘e
.

The twe outrut files contain the base roints, width raraneterss and o
it coefficients -~

ture LANZTD19.DATI1 .
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TYPE COMMANDS {CHEKIT.COM

<<« EVALUATE FILENAME >35>
Pl
by ASSION ‘P1’.DAT INFILE
ASSIGN ‘P1°H.DAT HEADER
INQUIRE P2 °“WHAT NAME DO YOU WISH FOR THE OUTPUT FILE? ENTER IT,PLEASE.®
ASSIGN ‘P2°.DAT OUTFILE
ASSIGN/USER_MODE SYSSCOMMAND: SYSSINPUT!
RUN UTILITYICHEKIT.EXE
14<<< PROMPTS WILL BE GENERATED FOR FURTHER INFORMATION. D>>>>
DEASSIGN INFILE
DEASSIGN QUTFILE
DEASSIGN HEADER
FILES 2.DAT

il X P

Ml I3

f and its use is agsin indicated in the command file.

EVALUATE LANZTE1?
& WHAT NANE DO YOU WISH FOR THE OUTPUT FILE? ENTER IT,PLEASE.! BRANCH.
% THE INTERPOLATION FILE FORMAT APPEARS TO BE
(1X»1PSD25.13)
THE DEFAULT SPLINE CMOICE IS
SSPLINES:
ENTER XMIN+XMAX)NUMBSER OF INTERIOR CHECX POINTS:
=3.363330761440581D0 2.3337789357844778D0 49
o DO YOU WISH TO CHANGE THE SPLINE CHOICE?
L4 ¢
ENTER THE INDEX OF THE INTERPOLANT, NUMBERS OF DERIVATIVES (0-4)¢

4
&

LR s

12
ACTIVE CONTROL & DOMAIN PARAMETERS:
XHIN XNAX JORD QUTPUT FORNMAT
=3.3633387461440381 2,3337789357844778 1 (1X»1P4E€18.8)
DO YOU WISH TO CALCULATE OTHER INTERPOLANTS IN THIS FILE?
lm'.:
FILES CLOSED.

Directory .DRA1:TIPR1.NETNODE]

LAY

X BRANCH.DATIt 8/11 26-APR-1982 135107 (RWED,RUED,RUWE,R)
‘3 LANZTS19.DATHL /11 26=-APR-1982 13:07 (RWED»RWEDIRUWE,R)
ot LANZTB19H.DATSL /711 26-APR-1982 15107 (RWED/,RUWED.RWE,R)

Total of 3 filess 17/33 bLlocks.

& v

Here the outrut file contains the evaluation sridy the inter-
rolanty and its Pirst tuo derivatives which can be used to
check the auslity of the rit ssainst the orisinal dats.

b b
]

tyre BRANCH.DATIL
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-3.863337€400
=3.447316£400
=3.329294€400
-3.,211272E+00
«3.093247€400
-2.975227€+00
-2.857205€+00
=-2.739162E400
-2.621160€400
-2.3503138€+00
-2.383115E400
=2:.267093E4+00
=2.149071E400
=2:,031046E+00
=1.913026E+00
=1.793003E+00
~1.476981E+00
-1.350939E+00
=1+ 440936E$00
=1.322914€400
=1+204892E+00
~1.,0860869E+00
-9.488470E-01
=8.300246€-01
=7.328023E~-0t
~6+147799€-01
-4, ’673735-01
-3.707332E-01
-2.607128E~01
~1.424903E-08
~2+4646813E-02
9.333422£-02
2:1137446E-01
3.293909E-01
4,474213E-01
S.6544346£-01
6.834460€~01
9.014684€~01
9.195107€-01
1,037333€+00
1,133333E+00
1,273378E400
1.,391600€400
1.309422€E+00
1,627643E400
1+.74S467€E400
1.9634906400
1.981712£+400
2,099734£300
2.2177397€400
2,3337279€+00

— TS T T T T —
paties A R -.'~"<4.N-'.'“’-'*.",r‘-.'*.

1.039832E+400
1.161874E+400
1.240839€E+00
1.2835800E+00
1.307987€+400
1.32337SE+00
1.336933E+00
1.,429004E+00
1.318362E4+00
1.331030€400
1.479900€400
1.381906E+00
1.310677E+00
1.204371E+00
1.083737E+00
?.936103E-01
9.377671E-01
9.774831E£-01
7.840593E-01
4.8029463E-01
3.840681E-01
5.024869€E-01
4,347243E-01
3+794732€-01
3.3367135E-01
3.022271E~-01
2.772742E-01
2.3584212£-01
2,438119€-01
2,325869€~01
2,241874€-01
2,173600E~-01
2,111704E-01
2,034791E~01
1,934634€-01
1.809339E-01
1,4646010E-01
1.,514884E-01
1,3463440€-01
1.,222963E-01
1.090829€-01
9.7132088€-02
8.4344335E-02
7.639666E-02
4$.,795973E-02

6.048220€-02

3.343881E-02
4,7239497€-02
4,207892€-02
3.8074632€-02
3.319387€-02

Eaur A W e Y

1.2279835E+00

8.,422902€-01

5.099783E~01

2+4708256E~-01

1,302959€-01

1,4674333E-01

4.,363951E-01

7.394584E-01

$.416348E-01
~1.798344€-01
-8.899082€E-01
~46.668783E-01
-6.834972€~01
=1.062440E+00
-9.075226E-01
~5.930998€~-01
=4,370949€-01
-$:351986E~01
~8.806479€-01
-8.742708€-01
=7+.526054€-01
-6+311619E-01
=3.192443E-01
~4,184092E~-01
=-3.252771E-01
=2.4413680E-01
=1,822774€-01
=1,3J99093E-01
~1.087332E-01
-9.211865E~-02
=6.174208€E-02
-35.281279€-02
=5.7714640E-02
~7.411116E-02
=-9,382734€-02
-1.152028€-01
-1.,263983E-01
~1.,283493E-01
~1.,241977€~-01
~1.1678356E-01
~1,0673508E-01
~9.,390212E~02
~8,492821E-92
~7.833403E-02
~4.787143E-02
+35.973888E~02
~3.440488E-02
+5.020084€-02
=3.,729024E-02
-3.3841456E€-02
~3.198019€-02

-3.239513E400
-3.140310E+00
~2.44877SE+00
~1.657441E400
-5.579908E~01
1.307838E+00
3.021442E400
1.667450€400
~4.197363E400
-8+467281E400
-1.815282E400
3.148222E+00
-3.541784E400
-1.,043433E400
2.678937E400
2.338012E+00
-1.565059E-01
-2,630297E400
-1.031771E+00
8.373162E-01
1.045729€+00
9.972327€~01
8.939089E-01
8.224108E-01
7+490377E~01
6+136411E-~01
4.341323E-01
2.974040E-01
2.413996E-01
2.062574E-01
1.30678B0E-01
1.707617€-02
-9.672065E-02
~1.720360E-01
-1,944407€-01
-1.349S04E-01
~5.330437E-02
1.498907€-02
$.096940€-02
7.449613€-02
9.304547E-02
8.582338E-02
6.892371€-02
8,157033E-02
8.826947E-02
4.331164E-02
2,449528E-02
9.1636468€-02
1.003034E-01
-6,394240E-02
-2.161074€-01

SEERZLEIRLIERLTERAXRLELLLELXLRAXRIXEXRL LR EXAAREXXXRXLX XXX XXX XX RXXXXREIRERX

The orisinal data far this check is the second coluan of

CRE19LZITE I.E.
vure CHEMNODEICRELILITE,.DAT
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the natursl lossrithm of the branching ratio.
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APPENDIX II. Derivation of the Electrodiffusive Limit

The general solution of the Hertz vector wave equation is a super-
position of incoming and outgoing cylindrical waves. The linear or nonlinear
response of the medium, specified by the convelution involving 3 J, acts to
cut off these freely propagating components. One may view this p;ocess as
the production of reflected power of nearly opposite intensity to that incident,
leaving a residual amount deposited in the load as Joule heating. Because
of this near cancelation of Z field components it is possible to neglect
the second order time derivative in the Z wave equation in a first approxima-
tion. In particular the requirement of a strict detailed balance in the free
wave component E:(x,r) demands that VZE: = 0, because one is interested in
the 1imit for which B;E:<<ard is true to arbitrary precision. Phys;gaaly the

common situation is one of nearly balanced waves in which € = sup 3135-<<1,
T

but the free wave components are solutions of [J2 E; = Q. The ggistraint
that VZE:.- 0 is simply a way to select the limit € - 0. Since any solution
of Laplaces equation valid inside some radius, and vanishing on that radius,
must vanish everywhere within, then in the 1imit of truly detailed balance
xE:) = 0 is a necessary condi-
tion. But using Faraday's law one has x'lax(xath)so as well. In terms of the

inside a radius x, and on that radius, x“aX(xa

W
Cl

balance in the wave components becomes -x°13X(x3X8§Z) = 0 for some region

Hertz vector Z, B, = -araxz, so that the original condition of detailed

X < Xge The equation governing the electodynamics in the 1imit of strict
detailed balance is thus obtained by operating on the original wave equation
with 72 and removing the contribution arising from a;z. The application of

V2 on the convolution with 3_J produces just the integrand
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4 'la{ 3 [ X axds d) an X+ /2 d%%an X3 J]}
™ 3 x| (G dxKe) Xy T Tx foan e

= 41r3T J(x,t).

SITERIRARIY -

The resulting equation is

latalonals

-1 = T,
X ax X axE 4waTJ R (A.I1.1)

because -V3Z = E in the original relationship. It is this relationship

AL D PN

which can be transformed into a diffusion equation for Ez(x,r).

4 DNCSTRRREATARS

Using the usual Ohm's law, one finds

w1 o

arJ = E BTZ +z 3T (Ez + BrBG + Eth)

g .:

¥ EJZ+ZI(3E, +8738y+Ba B +3E.,)

-

. and applying Faraday's law once again, to eliminate 3188 and form the
f% (dimensionless) material derivative,

 §

i

e 3 . ~ D—

% 3TJ E 3T L+ (Dr Ez + Baater + arEth)' (A.11.2)
: , :

4 Here T 3T + Br ax; E = Ez + BrBe + Eth’ the total electric field in

AT

r
the plasma load; and £ = ¢ EQ js the dimensionless conductivity. Finally,

.‘.

in this case of a linear response relating J and E, the equation determining

the diffusion of Ez into the plasma becomes

PR T
L 39 S

P

>
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e
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-D_ = 1 o1 - e N - 2

e Ez TnT X BX(A BX E) - E3T~n2 - BG 3TBr ar Eth' (A.11.3)
In the nonlinear case, reflecting a marginally stable drift speed

1imit, this derivation produces the same result, insofar as J = I(E) E is

formally admissible as a constitutive relation. However, one is forced

L iﬁ‘L A I T P v ["‘.." .

either to neglect, or to model from first principles, the term atznz in the

relationship just given. The reason stems from the implicit definition of
en ¢

Z(E) = == 3 . If an explicit time derivative is to be calculated for
E*dscale

I, then it must arise through some model of the turbulent fields providing 'g@
the enhanced drag on one's proverbial test particle. This model would
necessarily involve various functionals of E and its time history and would

generally not hold I to the exact, marginally stable value at all times.

Such a model is beyond the present scope of this work.

It is a better choice to assume that I(E) has no well-defined time
derivative, that it respresents a local, time averaged estimate of the truly
physical transport coefficient. A strict application of the marginal
stability constraint decouples J and E once E becomes sufficiently large.
When this decoupling is imposed on a diffusion egquation there is no mechanism
left to evolve J and E, cf. Egn(A.ILI.1). The hore accurate first principles

model would not force a complete decoupling, but would provide a smooth

transition between linear response and drift speed limitation -- the

appropriate asymptotic conditions. In contrast, for the complete electro-
magnetic description, a drift speed 1imit is fully admissible -- it simply =
(n_c_). The use of the full wave

T e’s
equation is preferable whenever strict adherence to the drift speed limitation

specifies a wave source term aTJ = @)

TR

is desired, and the wave components generated in the drift speed limited




i
el

~ regions of the load are probably important contributions to the dynamics of

x

NP

the transition front between the two asymptotic domains of resistivity. On

" the other hand, if the diffusive approximation is adopted, then the drift
\é speed 1imitation must be applied with the caveat that its time dependence
20 aTznZ(E) cannot be specified from the local drift speed constraint alone

A and {s better neglected than modeled in any ad hoc fasion.
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APPENDIX III. Area Weighted Differences

In the Lagrangian mesh shown in Figure 4 the only fundamental
positions are the radial cell boundary locations *rj, and their associated
velocities *Fj. The scalar quantities assigned to the cell centers have
implied spatial locations, grj, derived from the boundary locations. In order
to avoid formal sin§u1ar1ties in various derivative expressions the independent
variable is chosen here as 3; = L*rj)z, an areal coordinate. The two
primary types of differential operators to be estimated are (i) derivatives
of first and second order at a boundary based on cell-cenetered or cell
boundary data, and (ii) derivatives at the cell centers based on cell-

centered data.

Turning first to those operators based on or producing cell boundary

data, the radial gradient for any function ch defined on ;rj is estimated by

[ F, - F,
(arr)jaz*rj(c—i—i-l‘—l> . (A.I11.1)

ey ~ c¥i-1

with the second derivative estimate, based on Fj, given by

Feog = F, F. -F
(32 Py w2, |22 (J*_l-_-l -2, (=L
cj aj+1 - ?i, c j-1 a; - ai,

- (A.111.2)
¢ty T ¢yl

and the averaéing operator to the boundary defined as
a, - a a, - _a, e
Fooo|St—i—) cFap (=2 ) F (A.111.3) S
¢’y ¢4-1 cj c¢ij-1 J -~
These difference operators are then sufficient to cover all gradients and f{:&
averages needed in computing the evolution of the fundamental! boundary ;ﬁ?ﬂ}
variables [Vr(t)]j = *Fj and its integral, the Lagrangian position. j&ié
Res
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The corresponding operators estimating first and second order

gradients at the cell centers can be obtained similarly, Here the use of

ghost points located at o and crj+1 is the natural means of enforcing the

boundary conditions appropriate to the diffusive processes, such as thermal
condition. The difference operators given below assume that some cell-centered
quantity cFJ has been assigned ghost point values cFJ+l = ch, CFo = CF1 in
order to make the flux estimate, proportional to arF, vanish at the first and

last boundary. First one may define several (nonuniform) mesh intervals,

hS= a,- a

J ¢ c¢'j-1

>
h, = a - a

J oed o (A.111.4)
hj cdj+1 © -1

h  hs

hAs —i-dl

I \w¢ W

J J
and the ghost point locations

>
ho * Z(Cal - )

>
hy = 2age - 3y
The first derivative aaF is then estimated by

h< h
4 -

(3.F),= |- F.., +nd F. - F

ctta’l > ¢ j+l jed < ¢ j-1
hjL hi (A.1I11.5)
"

80

BN LY




with boundary conditions,

> - > - PR |
(3.F), » Mo cFamcfy (3_F) "y . cFurcfu-1 -
c'%a’ 1 h>+h> h> ' Y3 N = h>+h> h> : e
o 1 1 J J-1 J-1 el
The second derivatives are similarly obtained using ffi
(a2F), & 2= "y Fiop = cF +5 F (A.II1.6) o
ca ‘g <R h, ¢j*l ¢j h, ¢ j-1 ? iy e

hy by J J

while the boundary conditions become

F,- _F F.- F
cta’l h h +he c'a > W o+h
1 o 1 J=1 J=1"J

A1l the expressions reduce to well known second order accurate

differencing schemes when the mesh is presumed uniform.
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